Рис. 68–76. Три схемы включения лампы и транзистора.
68 — наиболее распространенная схема лампового усилителя с заземленным катодом;
69 — схема с заземленной сеткой;
70 — схема с заземленным анодом (катодный повторитель);
71 — наиболее распространенная схема транзисторного усилителя с общим эмиттером;
72 — схема с общей базой;
73 — схема с общим коллектором;
74–76 — другой вариант начертания трех основных транзисторных схем. На рисунке наглядно показано, как ток эмиттера Iэ разделяется в общей точке на две частя: ток базы Iб и ток коллектора Iк.
Н. — Странная схема. Впрочем, в этом случае через нагрузочный резистор все равно проходит анодный ток, так что на нем выделяется и усиленное напряжение.
Л. — Употребив выражение «усиленное напряжение», ты был неправ, ибо коэффициент усиления этой схемы, именуемой катодным повторителем, меньше единицы. В ней сопротивление нагрузки действует как сопротивление обратной связи, в результате чего схема не может создавать выходное напряжение больше входного.
Н. — Значит, эта схема не представляет никакого интереса?
Л. — Совсем наоборот. Прежде всего отметь себе, Незнайкин, что напряжение, возникшее на сопротивлении нагрузки, совпадает по фазе с напряжением, приложенным к сетке.
Н. — Именно по этой причине схема и отличается такой небывало сильной отрицательной обратной связью?
Л. — Разумеется. Но если ты включишь второе сопротивление нагрузки в анодную цепь, т. е. обычным способом…
Н. — …то здесь выходное напряжение окажется в противофазе с напряжением на входе. Значит, одна и та же лампа позволит получить два выхода с напряжениями в противоположных фазах. Какая удобная схема для подачи сигнала на сетки ламп двухтактного каскада!
Л. — Это верно, но катодный повторитель часто используется и в других случаях, когда нужно получить малое выходное сопротивление, ибо, хотя, как я вижу, ты и сомневаешься, сопротивление нагрузки, включаемое в катодную цепь, можно взять значительно меньшим, чем сопротивление, включаемое в анодную цепь. Можно даже непосредственно включить в цепь катода звуковую катушку громкоговорителя и обойтись без выходного трансформатора, устранив таким образом источник значительных искажений.
Н. — Ты положительно убедил меня в достоинствах катодного повторителя, но я уже изучил и тебя и твои приемы. Если ты с таким жаром говоришь мне о трех схемах включения ламп, то, несомненно, только ради того, чтобы затем проанализировать соответствующие схемы на транзисторах.
Транзисторный вариант
Л. — От тебя положительно ничего нельзя скрыть. Действительно, каждой из этих трех схем соответствует свой способ включения транзистора. Для большей ясности я начертил каждую из них в двух вариантах (рис. 71–73); транзистор изображен в виде прямоугольника, каким мы обозначили его сначала; на таком рисунке лучше виден путь тока между тремя областями транзистора, иногда я сожалею, что такое обозначение транзистора не было принято повсеместно. Во втором случае (рис. 74–76) эти же схемы начерчены с обычным условным обозначением транзистора, а здесь я постарался более четко показать цепь тока коллектора. А для большей наглядности я выделил жирными линиями и анодные цепи ламп на рис. 68–70.
Н. — И правда, твои рисунки не похожи на те, что я привык до сих пор видеть. Они, по крайней мере, кажутся мне очень простыми. Я вижу три возможности включения транзисторов: заземлив эмиттер (рис. 71 и 74), заземлив базу (рис. 72 и 75) и заземлив коллектор (рис. 73 и 76).
Л. — Наличие заземления необязательно, и правильнее эти три схемы называть так: схема с общим эмиттером (ОЭ), схема с общей базой (ОБ) и схема с общим коллектором (ОК).
Н. — Понимаю: суть заключается в том, что в каждой из них одна из трех зон транзистора является общей для входной и выходной цепей…
Л. — Мы долго занимались этой схемой, потому что она применяется значительно чаще других.
Н. — Так же, как схема с общим катодом для ламп.
Л. — Разумеется. Ты знаешь, что при правильном использовании эта схема может дать прекрасное усиление как по току, так и по напряжению, а следовательно, и по мощности. Я хочу напомнить тебе, что выходное напряжение в схеме с ОЭ имеет фазу, противоположную входному напряжению, что входное сопротивление составляет несколько сотен ом, а выходное — несколько десятков килоом.
Усилитель ли это?
Н. — Все это я хорошо запомнил. Можно ли мне обратиться в путешествие и попытаться проанализировать схему с ОБ? Входное напряжение здесь также прикладывается между эмиттером и базой, но на этот раз роль входного электрода выполняет эмиттер, а база остается пассивной. Если входной сигнал вызывает увеличение положительного потенциала эмиттера относительно базы, то ток базы увеличивается, возрастает и ток коллектора; в результате падение напряжения на сопротивлении нагрузки также увеличивается, а выходной потенциал становится более положительным. Напряжение на выходе в этом случае усилено.
Н. — Здесь кое-что меня смущает. Во входной цепи мы имеем ток эмиттера Iэ, а в выходной — только ток коллектора, который несколько меньше, так как ток эмиттера (это отчетливо видно на рисунке) делится на два тока: ток базы Iб и ток коллектора Iк. А что верно для токов, то верно и для их небольших изменений. Следовательно, усиление[15] по току, т. е. отношение малых изменений выходного тока ΔIк к малым изменениям входного тока ΔIэ, меньше единицы, так как ток Iэ больше тока Iк. Это, скорее, ослабление, а не усиление.
Л. — Да, и его обозначают буквой α, а в схеме с ОЭ усиление по току обозначается буквой β.
Н. — По-моему, нелогично давать первую букву греческого алфавита схеме, которая реже применяется.
Л. — Это имеет свои исторические причины, мой друг. На заре транзисторов были известны только точечные типы транзисторов, и только схема с ОБ позволяла стабильно применять эти приборы.
Н. — Значит, схема с ОБ не представляет никакого интереса, так как она, вместо того чтобы усиливать сигнал, ослабляет его.
Схема имеет не только исторические заслуги
Л. — Вот опасности выводов столь же поспешных, как и окончательных, так характерных для молодого поколения…