Литмир - Электронная Библиотека
A
A

Далее он полагает, что если построить шар с диаметром, равным диаметру Солнечной системы, который, как он полагает, меньше 1010 стадий, то объем этого шара будет менее 1030 кубических стадий, а следовательно, в нем будет заключаться менее, чем 1051 песчинок, или, по нашей с тобой системе, менее квинтильона децильонов. Наконец, Архимед строит шар с радиусом, равным расстоянию от Земли до неподвижных звезд, которое, по его мнению, менее десяти тысяч диаметров Солнечной системы, и утверждает, что в таком шаре будет заключаться менее 1063 песчинок, или, по нашим с тобой обозначениям, менее нонильона децильонов. Может быть, тебе эта величина станет немного яснее, если я скажу, что в переводе на современные меры объем этой сферы Архимеда менее нежели 5 · 1054 кубических сантиметров.

Но Архимед не употреблял позиционной системы, как не пользовался он и показателями степени. Он строит для этого рассуждения свою систему чисел, начиная с греческого числа «мириада», которое равно десяти тысячам, то есть 104. Тогда числа до мириады он называет первыми числами, затем идет мириада мириад, или 108, которая будет единицей вторых чисел. Мириада мириад вторых чисел, или 1016, будет единицей третьих чисел, и так далее. И вот теперь оказывается, что для того, чтобы определить, сколько песчинок будет в сфере, радиус которой равен расстоянию от Земли до неподвижных звезд, достаточно взять число, которое будет менее тысячи мириад восьмых чисел Архимеда.

Таким образом, Архимед на очень несложном и очень ярком примере показал, что человеческая способность последовательно строить числа легко справляется с величинами, для которых трудно подобрать пример, который что-нибудь говорил бы нашим чувствам. Заметь, что Архимед нигде не определяет точно своих чисел. Он ограничивается тем, что указывает только на то, что искомое число не может превышать некоторой определенной величины. Таким образом,

— 174 —

он нам указывает на то, что называется порядком величины. Мне кажется, да ты и сам можешь легко догадаться (уже не маленький!), что большего в таком рассуждении и не надо.

— Да, уж действительно! — промолвил Илюша. — Я раньше думал, что это ужасно большое число, знаешь, вот в этой задаче, где надо сосчитать, сколько зерен будет лежать на шахматной доске в шестьдесят четыре квадрата, если на первый квадрат положить одно зернышко пшеницы и на каждую следующую клетку класть в два раза больше. Но там совсем не так много получается.

— Да. Для обыкновенной шахматной доски получается число порядка десятков квинтильонов. Если взять стоклеточную доску, на которой играют в так называемые «польские шашки», то тогда число зерен доберется до нонильонов. А если взять доску еще побольше, у которой не десять полей с каждой стороны, а четырнадцать, и всего будет сто девяносто шесть полей, то вот тогда мы как-нибудь уж доползем до сотен септильонов децильонов.

— Как скоро все-таки растет! — воскликнул Илюша.

— Да, — отвечал Радикс, — растет недурно. Что же касается Архимеда, то он останавливается на числе, которое можно записать так:

108 · 1016

и которое представляет собой единицу с восьмьюдесятью квадриллионами нулей. Если это число написать на бумажной ленте, умещая по пятисот нулей на одном метре, то есть писать очень мелко и убористо, то на одном километре ленты мы напишем пятьсот тысяч нулей и на двух километрах один миллион. А так как нулей восемьдесят квадриллионов, или восемьдесят биллионов миллионов, то ленточка наша будет длиной в сто шестьдесят биллионов километров! Ленточка не маленькая: она в четыре с лишним раза длиннее орбиты, по которой несется планета Плутон. Свет, как ты знаешь, двигается довольно быстро. Однако все-таки, если бы на одном конце нашей ленточки мелькнула яркая звезда, на другом конце ее увидали бы не сразу, а только через шесть суток. Но ведь это еще только изображение архимедова числа, а не само число!

— Удивительно! — сказал Илюша.

— Работы Архимеда были удивительны не только для тебя, но и для людей недюжинных способностей и великих знаний. Древний историк Плутарх так говорил об Архимеде: «Во всей геометрии нет теорем более трудных и более глубоких, нежели теоремы Архимеда. Мне самому всегда казалось, когда

— 175 —

Единицы 100 Первые архимедовы числа.
Тысячи 103
Миллионы 106
108 — вторые архимедовы числа (мириады мириад).
Биллионы 109
Триллионы 1012
Квадрильоны 1015
1016 — третьи архимедовы числа.
Квинтильоны 1018 *
Секстильоны 1021
Септильоны 1024 1024 — четвертые архимедовы числа.
Октильоны 1027
Нонильоны 1030 **
1032 — пятые архимедовы числа.
Децильоны 1033
Тысячи децильонов 1036
Миллионы децильонов 1039
1040 —шестые архимедовы числа.
Биллионы децильонов 1042
Триллионы децильонов{10} 1043
Квадрильоны децильонов 1048 1048 — седьмые  архимедовы числа.
Квинтильоны децильонов 1051
Секстильоны децильонов 1054
1056 — восьмые архимедовы числа.
Септильоны децильонов 1057
Октильоны децильонов 1060 ***
Нонильоны децильонов 1063
1064 —девятые архимедовы числа.
Децильоны децильонов 1066
43
{"b":"555984","o":1}