На первый взгляд этот метод очень хорош, но по целому ряду причин его использование для схем с транзисторами и полевыми транзисторами очень ограничено. Во-первых, вольт-амперные характеристики, указываемые для полупроводниковых элементов, являются «типичными», а их технологический разброс может быть 5-кратным. Представьте, какой результат можно получить с помощью метода нагрузочных линий, если все характеристики сожмутся в 4 раза! Во-вторых, для элементов, обладающих логарифмическими характеристиками, таких, как диодный переход, линейная нагрузочная линия дает точный результат только на небольшом участке. И наконец, для всех элементов на твердом теле подходят неграфические методы, которые мы уже представили в этой книге. Эти методы, в частности, основаны на таких параметрах элементов, на которые можно положиться (rэ, Iк при данных Uбэ и Т°С и т. п.), а не на параметрах, подверженных большим изменениям (h21э, напряжение отсечки и т. п.). Во всяком случае, использование метода нагрузочных линий для транзисторов на основе публикуемых в паспортных данных характеристик дает вам ложное чувство уверенности в своих результатах, так как в этих характеристиках не учтен разброс.
Метод нагрузочных линий очень полезен для понимания работы схем, в состав которых входят нелинейные элементы. Некоторые интересные моменты иллюстрирует пример с туннельным диодом. Рассмотрим схему, представленную на рис. Е.4.
Рис. Е.4.
Отметим, что в данном случае роль питающего напряжения играет напряжение Uвх. Изменение сигнала от пика до пика порождает семейство параллельных нагрузочных линий, пересекающихся с вольт-амперной характеристикой элемента (рис. Е.5, а). Приведенные значения соответствуют сопротивлению 100 Ом для резисторов нагрузки. Как следует из графика, выходной сигнал быстрее всего изменяется, когда нагрузочная линия пересекает участок отрицательного сопротивления на характеристике диода. Значения Uвых (представляющие собой проекцию на ось х), соответствующие различным значениям Uвх(отдельные нагрузочные линии), образуют представленную в этом же примере передаточную характеристику. Рассматриваемая схема обеспечивает некоторое усиление по напряжению для входных напряжений вблизи значения 0,2 В.
Рис. Е.5.
Интересное явление наблюдается в том случае, когда нагрузочные линии становятся более пологими, чем средняя часть характеристики диода. При этом сопротивление нагрузки превышает абсолютную величину отрицательного сопротивления диода и возможны две точки пересечения с характеристикой диода, как на рис. Е.6. По мере того как растет выходной сигнал, нагрузочные линии поднимаются до тех пор, пока точка пересечения не переходит скачком к более высокому значению Uвых. При изменении в обратном направлении точка пересечения аналогичным образом перемещается вниз до тех пор, пока скачком не возвратится обратно. Полная передаточная характеристика, как видим, обладает гистерезисом. Это явление позволяет использовать туннельные диоды в качестве быстродействующих переключательных элементов (триггеров).
Рис. Е.6.
Приложение Ж
НАСЫЩЕНИЕ ТРАНЗИСТОРА
Подзаголовком этого приложения могут стать такие слова: «Диод база-коллектор одерживает победу над транзистором». На простой модели транзистора, в образе которого выступает человек, можно убедиться в наличии конечного напряжения насыщения, которым обладает биполярный транзистор. Основная идея состоит в том, что переход коллектор — база представляет собой большой диод с высоким значением I0 (уравнение Эберса-Молла), значит, в открытом состоянии напряжение на нем при заданном значении тока ниже, чем на диоде база-эмиттер. Следовательно, при небольших значениях напряжения между коллектором и эмиттером (обычно 0,25 В и ниже) некоторую часть базового тока «забирает» диод коллектор-база (рис. Ж.1).
Рис. Ж.1.
В связи с этим уменьшается эффективное значение h21э, и для того, чтобы потенциал коллектора был близок потенциалу эмиттера, приходится поддерживать относительно большие базовые токи. Это подтверждают результаты измерений, приведенные на рис. Ж.2.
Рис. Ж.2.
Коллекторное напряжение насыщения UK (нас.) при определенном значении базового и коллекторного тока является величиной, почти не зависящей от температуры, так как температурные коэффициенты двух диодов взаимно компенсируют друг друга (рис. Ж.З). Это свойство представляет интерес, так как насыщенный транзистор часто используют для переключения больших токов и он может нагреваться (например, ток 10 А при напряжении насыщения 0,5 В дает мощность 5 Вт, которой вполне достаточно для того, чтобы переход небольшого мощного транзистора нагревался до температуры 100 °C или выше).
Рис. Ж.3.
При использовании насыщенных переключателей обычно создают большой базовый ток (составляющий обычно 1/10 или 1/20 часть от коллекторного тока) для того, чтобы напряжение UКЭ (нас.) достигало значения в пределах от 0,05 до 0,2 В. Если нагрузка «потребует», чтобы коллекторный ток был значительно больше, то транзистор выйдет из насыщения и рассеиваемая мощность станет значительно больше.
Результаты измерений, представленные на рис. Ж.4, показывают, что трудно точно установить, когда транзистор насыщен; можно использовать, например, такой критерий: IК= 10·IБ.
Рис. Ж.4.
Приложение 3
LС-ФИЛЬТРЫ БАТТЕРВОРТА
Активные фильтры, как мы установили в гл. 5, очень удобно использовать на низких частотах, но на радиочастотах они неприменимы из-за условий, которые они предъявляют к ОУ в отношении скорости нарастания и ширины полосы пропускания. На частотах порядка 100 кГц и выше (а часто и на более низких частотах) лучше всего использовать фильтры, состоящие из индуктивностей и конденсаторов. Конечно, на СВЧ и микроволновых частотах вместо этих «ламповых» фильтров используют полосковые линии и резонаторы.
Для LC-фильтров, так же как и для активных фильтров, существуют различные методы анализа, различные характеристики. Например, можно использовать классические фильтры Баттерворта, Чебышева, Бесселя в качестве фильтров низких частот, высоких частот, полосовых и заграждающих фильтров.
Оказывается, что проще всего разработать фильтр Баттерворта и на одной-двух страницах можно изложить всю информацию, необходимую для разработки НЧ- и ВЧ- LC-фильтров Баттерворта и даже привести примеры. Для получения более полной информации мы рекомендуем прекрасное руководство Зверева, указанное в библиографии. В табл. 3.1 приведены значения нормализованных индуктивностей и емкостей для фильтров НЧ различного порядка. С помощью этой таблицы определяют действительные значения емкостей и индуктивностей по формулам для соответствующих фильтров.