Литмир - Электронная Библиотека
Содержание  
A
A

Глядя на законсервированный орган, практически невозможно сказать, будет ли он работать после трансплантации, даже если сделать биопсию и исследовать его ткань под микроскопом. После удаления органа из него выкачивают кровь, заполняют его специальным раствором и хранят на льду. Все выглядит хорошо, но внешность обманчива. Нормальный на вид орган может отказать через некоторое время после пересадки. Как ни парадоксально, считается, что повреждение связано с возвращением кислорода. Период консервации подготавливает орган к катастрофической потере работоспособности после трансплантации, что связано с утечкой свободных радикалов из дыхательных цепей митохондрий.

Как-то раз я находился в операционной во время операции по пересадки почки. Моей задачей было разместить на почке специальные зонды, которые, как мы надеялись, позволят понять, что происходит внутри, не прибегая к физическому взятию образцов ткани. Мы использовали очень хитроумный прибор — спектрометр ближней инфракрасной области. Направляя на ткань пучок инфракрасных лучей, мы измеряли, какая часть излучения пройдет насквозь. Применив к этим данным сложный алгоритм, можно вычислить, сколько радиации поглощается или отражается в ткани. Крайне важно правильно подобрать длину волны, так как разные молекулы поглощают в разных спектрах. Нас интересовали гем-содержащие белки, такие как гемоглобин или цитохромоксидаза (окончательный фермент дыхательных цепей митохондрий). Этот метод позволяет оценить не только концентрацию обеих форм гемоглобина (окси- и дезоксигемоглобина), но и окислительно-восстановительное состояние цитохромоксидазы. Иными словами, он позволяет понять, какая часть молекул цитохрома находится в окисленном, а какая — в восстановленном состоянии, то есть какую часть молекул занимают в данный момент дыхательные электроны. Мы использовали этот метод параллельно с другой разновидностью спектроскопии, позволяющей оценить окислительно-восстановительное состояние NADH — соединения, которое поставляет электроны в дыхательные цепи. Мы надеялись, что совместное использование этих двух методов позволит нам получить представление о работе дыхательной цепи в режиме реального времени без физического вмешательства в почку, что, как вы понимаете, является огромным преимуществом во время сложной операции.

Все это может показаться весьма запутанным, но настоящий кошмар начинается, когда приступаешь к интерпретации полученных данных. Гемоглобина в ткани очень много, а цитохромоксидазы крайне мало. Хуже того, длины волн инфракрасных лучей, которые поглощают разные гем-содержащие белки, перекрываются, и сказать, с каким именно соединением мы имеем дело, бывает очень трудно. Даже у прибора заходит ум за разум: он показывает изменение окислительно-восстановительного состояния цитохромоксидазы, когда на самом деле, судя по всему, происходит изменение уровня гемоглобина. Мы почти отчаялись получить при помощи нашего приспособления хоть какую-то полезную информацию. От измерения уровней NADH тоже было мало толку. Как правило, прибор показывал большое количество NADH до пересадки, а после пересадки пик концентрации исчезал без следа. В науке такое происходит сплошь и рядом: на бумаге все выглядит оптимистично, а реальность просто не поддается интерпретации.

И тут на меня нашло озарение. Именно в тот момент я впервые почувствовал, что миром правят митохондрии. Произошло это случайно. Дело в том, что одним из анестетиков при операции был пентобарбитон натрия. Его концентрация в крови колебалась, и иногда изменения его концентрации соответствовало изменениям показаний наших приборов. Повышение уровня пентобарбитона натрия не влияло на изменение уровней оксигемоглобина и дезоксигемоглобина, но влияло на динамику дыхательной цепи. Снова регистрировался некоторый пик NADH (он становился более восстановленным), а цитохромоксидаза становилась более окисленной. Нам показалось, что мы наконец-то зарегистрировали не обычные досадные помехи, а что-то стоящее. Что же происходило в это время?

Оказалось, что пентобарбитон натрия является ингибитором комплекса I дыхательной цепи. С повышением уровня его содержания в крови он частично блокировал проход электронов по дыхательным цепям. Первые этапы дыхательных цепей, включая NADH, становились более восстановленными, а последующие этапы, в том числе цитохромоксидаза, передавали электроны кислороду и становились более окисленными. Но почему такая четкая зависимость наблюдалась не каждый раз? Это, как мы скоро поняли, зависело от качества органа. Если орган был свежим и работал нормально, мы легко регистрировали флюктуации, а если он был серьезно поврежден, отследить их было практически невозможно. Тогда приборы показывали обычное бесследное исчезновение всех пиков. Единственное объяснение, которое тут можно было предложить, заключалось в том, что такие митохондрии протекают, как решето. Практически все немногие электроны, поступавшие в цепи, не доходили до конца, а рассеивались в виде свободных радикалов.

Без тщательного биохимического анализа тканей мы не могли точно сказать, что именно происходит в этих митохондриях. Однако было очевидно, что поврежденные органы теряют контроль над митохондриями через несколько минут после трансплантации. Мы были абсолютно бессильны предотвратить этот процесс. Пытаясь улучшить работу митохондрий, мы пробовали самые разнообразные антиоксиданты, но безрезультатно. Очевидный лишь недели спустя исход операции по пересадке почки зависел от работы митохондрий в первые несколько минут после пересадки. Если в самом начале митохондрии давали сбой, почка погибала, а если в них еще тлела жизнь, у почки были хорошие шансы прижиться. Я понял, что митохондрии правят жизнью и смертью почки и повлиять на них крайне трудно.

С тех пор, имея дело с самыми разными областями исследований, я понял, что динамика дыхательной цепи, которую я пытался измерить много лет назад, является важнейшей эволюционной силой, определяющей не только приживаемость почек, но и всю траекторию жизни. В самом сердце этой силы лежит простая взаимосвязь, которая, возможно, возникла одновременно с самой жизнью. Это зависимость практически всех клеток от своеобразного энергетического заряда, который Питер Митчелл назвал хемиосмотической, или протон-движущей силой. Именно об этой силе мы говорили в этой книге, обсуждая ее разные аспекты в разных главах. На последних страницах этой книги я попробую связать это все воедино, чтобы показать, как несколько простых правил направили ход эволюции от происхождения жизни до зарождения сложных клеток и многоклеточных особей, возникновения полового процесса, двух полов, старения и смерти.

Хемиосмотическая сила — фундаментальное свойство жизни. Возможно, она древнее, чем ДНК, РНК и белки. Первые хемиосмотические «клетки» могли образовываться из микроскопических пузырьков железо-серных минералов, которые сливались в зоне смешивания жидкостей, просачивающихся из земных глубин, с водой древнего океана. Такие минеральные «клетки» имели ряд общих черт с живыми клетками. Для их образования не нужно было никаких сложных эволюционных новшеств, а требовалась всего лишь окисляющая энергия солнца. Хемиосмотические «клетки» проводили электроны через поверхность, а поток электронов закачивал протоны через мембрану с образованием электрического заряда — силового поля клетки. И по сей день все формы жизни от бактерий до людей Производят энергию путем трансмембранной закачки протонов. Энергия образовавшегося градиента направляется на такие задачи, как движение, производство АТФ, теплопродукция и поглощение молекул. Отдельные исключения только подтверждают это правило.

В современных клетках электроны переносятся специализированными белками дыхательных цепей, которые используют поток электронов для закачки протонов через мембрану. Источником электронов служит пища. Проходя по дыхательным цепям, они взаимодействует с кислородом или другими молекулами, которые служат той же цели. Все организмы должны контролировать поток электронов по дыхательным цепям. Если поток слишком быстрый, энергия растрачивается без толку, а слишком медленный поток не позволяет удовлетворить энергетические запросы клетки. Дыхательные цепи ведут себя как трубы с мелкими трещинками: если вода течет свободно, все нормально, но любой засор, как в начале, так и где-то в середине, приводит к протечке. Утечка электронов из засорившихся дыхательных цепей приводит к образованию свободных радикалов. Есть лишь несколько возможных причин блокировки потока электронов и лишь несколько способов восстановить этот поток. Тем не менее баланс между производством энергии, с одной стороны, и образованием свободных радикалов — с другой (именно с этой проблемой я столкнулся при исследовании почки), определил ряд важнейших, хотя и не очевидных биологических законов.

97
{"b":"551194","o":1}