На основании двух установленных фактов у нас есть возможность с довольно высокой долей уверенности утверждать, что такое возникновение жизни «урывками» действительно имело место быть. Во-первых, жизнь на нашей планете появилась скорее рано, чем поздно, — в первую треть имеющейся на сегодня истории Земли. Если жизнь смогла появиться — и появилась — за один миллиард лет, то есть некоторая вероятность того, что она могла сделать это и за более короткий срок. Вполне возможно, что на возникновение жизни нужно не более нескольких миллионов или, может, десятков миллионов лет. Во-вторых, мы знаем, что столкновения между крупными объектами и Землей раз в несколько десятков миллионов лет действительно уничтожали большинство видов живых существ, обитавших на нашей планете. Самый известный подобный случай — это исчезновение жизни в мелово-третичный период 65 миллионов лет назад: тогда погибли все нелетающие динозавры и огромное количество других видов. Правда, даже это массовое вымирание недотягивает до самого масштабного из известных истории: в пермотриасовый период 252 миллиона лет назад исчезло почти 90 % всех форм морской жизни и 70 % всех наземных позвоночных — в качестве преобладающей формы жизни на Земле тогда остались грибы.
И мелово-третичное, и пермотриасовое исчезновение видов произошли в результате столкновений с Землей объектов шириной до двух десятков миль. Геологи обнаружили громадный кратер возрастом 65 миллионов лет, чье образование совпадает с мелово-третичным исчезновением видов. Этот кратер тянется через северную часть полуострова Юкатан и уходит в морское дно. Крупный кратер того же возраста, что и пермотриасовый инцидент, тоже существует: он был найден у северо-западного побережья Австралии. Но столь массовое вымирание могло стать результатом не только столкновений, как таковых, но и еще каких-то факторов, например постоянных извержений вулканов. Даже один-единственный пример исчезновения динозавров в мелово-третичную эпоху напоминает нам о том, какой огромный ущерб может нанести жизни на Земле комета астероид. В эпоху бомбардировки Земля должна была регулярно содрогаться не только от подобных событий, но и от гораздо более серьезных последствий столкновений с объектами диаметром по 50, 100 или даже 250 миль[58] каждый. Каждая подобная встреча, должно быть, уничтожала земную жизнь если и не подчистую, то оставляя в живых лишь крошечный процент обитателей — и эти встречи должны были приключаться гораздо чаще, чем в нынешнее время происходят столкновения с десятимильными объектами. Наши текущие знания в области астрономии, биологии, химии и геологии указывают на то, что на ранних стадиях своего существования Земля была способна создавать жизнь, а ее космическое окружение было способно эту жизнь уничтожать. И если где-то относительно недавно сформировалась какая-нибудь звезда, а вокруг нее — несколько планет, то вполне возможно, что они сейчас подвергаются со стороны останков этого формирования интенсивной бомбардировке, которая уничтожает все формы жизни на этой далекой планете.
Более 4 миллиардов лет назад большая часть строительного материала, оставшегося от образования Солнечной системы, либо столкнулась с планетами (и осталась на них), либо переместилась на орбиты, на которых столкновения не происходят. В результате наша космическая община понемногу сменила политику бесперебойной бомбардировки на политику всеобщего мира и спокойствия, которыми мы и имеем удовольствие наслаждаться сегодня. Лишь раз в несколько десятков сотен миллионов лет столкновения с объектами, достаточно крупными для того, чтобы представлять собой угрозу жизни на Земле, все еще происходят. Оценить древнюю и неисчезающую угрозу, исходящую от космических агрессоров, можно, взглянув на полную Луну. Огромные равнины из лавы, из которых получилось «лицо» на поверхности Луны, являются результатами громадных внешних воздействий около 4 миллиардов лет назад: тогда как раз завершилась эпоха бомбардирования. В то же время кратер Тихо шириной 55 миль появился вследствие менее значительного по силе, но все еще очень значительного по сути своей события, произошедшего вскоре после того, как с лица Земли пропали динозавры.
Мы не знаем, существовала ли жизнь 4 миллиарда лет назад, стойко преодолевая бомбардировку, или же зародилась только по окончании тех смутных времен, когда наступило относительное затишье. Но и в том и в другом случае резонно будет признать, что падающие на Землю объекты могли принести с собой семена жизни. Если жизнь возникала и исчезала раз за разом, пока с небес сыпался смертельный дождь из булыжников, то процессы ее становления должны быть весьма жизнестойкими и мы можем обоснованно предполагать, что те же процессы могут протекать вновь и вновь и в других мирах, подобных нашему. Если же жизнь на Земле возникла лишь однажды — сама по себе или в результате космического оплодотворения, — то само это возникновение вполне можно рассматривать как невероятно удачное стечение обстоятельств.
Так иначе, ключевой вопрос о том, как возникла жизнь на Земле и сколько раз это произошло, остается без уверенного ответа, хотя разговоры и размышления об этом уже давно обрели свою собственную долгую и местами удивительную историю. Великая награда ждет того, кто сможет разрешить эту загадку. От Адамова ребра до монстра доктора Франкенштейна, человек всегда отвечал на этот вопрос, ссылаясь на таинственную élan vital — силу жизни, которая превращает неодушевленное вещество в живой организм.
Ученые стремятся копать как можно глубже, проводя лабораторные эксперименты и изучая имеющийся у них палеонтологический профиль, представленный различными окаменелостями, чтобы как можно точнее определить ту границу, что разделяет одушевленное и неодушевленное, и понять, как смогла природа преодолеть эту границу, пока больше напоминающую не узкую канаву, но громадную пропасть. Ранние научные рассуждения о возникновении жизни ссылались на взаимодействие простых молекул, сконцентрированных в водоемах приливных бассейнах, вследствие чего постепенно образовывались все более сложные молекул. В 1871 году, через 12 лет после издания замечательной книги Чарльза Дарвина «Происхождение видов», в которой он рассматривал вероятность того, что «все органические существа, когда-либо жившие на Земле, могли произойти от одной первобытной формы»[59], Дарвин написал своему приятелю Джозефу Хукеру следующее:
«…Часто говорят, что все условия для первого появления живого организма существуют сейчас и что они могли существовать всегда. На если бы сейчас (и ах — какое большое „если бы“!) в каком-либо теплом водоеме, содержащем все необходимые соли аммония и фосфора и доступном для воздействия света, тепла, электричества и т. п., химически образовался белок, способный к дальнейшим все более сложным превращениям, то в наши дни такое вещество было бы незамедлительно поглощено, а ведь такое не могло случиться тогда, иначе жизнь так никогда и не сформировалась бы».
Другими словами, в те времена, когда Земля созрела для создания жизни, базовые соединения, необходимые обмена веществ, могли существовать в избытке, и при этом не было ничего, что могло бы съесть их. (И, как мы уже отмечали, кислорода, который мог бы соединиться с ними и испортить их потенциальные питательные свойства, тоже еще не было.)
С наручной точки зрения ничто не может быть успешнее экспериментов, которые можно сравнить с реальностью. В 1953 году, стремясь протестировать идею Дарвина о зарождении жизни в водоемах и приливных бассейнах, аспирант Чикагского университета Стэнли Миллер и его руководитель, нобелевский лауреат Гарольд Юри, провели известный эксперимент, в рамках которого в сильно упрощенном и гипотетическом водоеме воссоздали условия ранней Земли. Миллер и Юри частично заполнили лабораторную колбу водой и добавили туда газовую смесь из водного пара, водорода, аммиака и метана. Они нагрели флягу снизу, выпарив некоторое количество ее содержимого, и отправили его по стеклянной трубке в другую колбу, где электрический разряд имитировал молнию. После этого смесь возвращалась в первую колбу, завершая этим цикл событий, которые затем повторялись в течение нескольких дней (нет, не нескольких тысяч лет, конечно). По прошествии этого скромного промежутка времени Миллер и Юри обнаружили, что вода в нижней части колбы содержит в себе вязкий «органический продукт» — химическое соединение из множества сложных молекул, включая различные виды сахара и две простейшие аминокислоты: аланин и гуанин. Молекулы белка состоят из 22 аминокислот, соединенных друг с другом в форме различных структур, а эксперимент Миллера — Юри за удивительно короткий промежуток времени провел нас от ряда простейших молекул до формирования первых аминокислот, молекулы которых являются строительными кирпичиками живых организмов. В результате эксперимента Миллера — Юри были также получены в меру сложные молекулы, которые называются нуклеотидами: они являются ключевым структурным элементом ДНК — той огромной белковой молекулы, которая несет в себе указания по формированию новых копий живого организма. И все же до возникновения жизни в искусственно созданных в лаборатории условиях нам еще очень и очень далеко. Огромная и очень важная пропасть, которую пока не смогли преодолеть ни один человеческий эксперимент человеческое изобретение, разделяет образование аминокислот — пусть даже их было бы все 20, чего добиться нам, кстати, не удается, — и возникновение жизни. Молекулы аминокислот были также обнаружены в самых древних и наименее подвергнувшихся изменениям метеоритах, которые предположительно оставались в практически первозданной форме на протяжении всех 4,6 миллиарда лет истории Солнечной системы. Это поддерживает общее заключение о том, что аминокислоты могут образовываться в результате естественных процессов в самых разных условиях. По сути, результаты эксперимента не являются шокирующими и даже в целом удивительными: более простые молекулы, которые входят в состав живых организмов, образуются в ряде ситуаций довольно быстро, но о жизни как таковой этого сказать нельзя. Ключевой вопрос все еще оставлен без ответа: как группа молекул, пусть даже идеально подготовленная для зарождения жизни, провоцирует в итоге возникновение этой самой жизни?