Разумеется, все эти влияния были переплавлены Галилеем в некоторое - хотя и не лишенное известных противоречий - целое. Так, например, только опираясь на метод Архимеда, создавшего теорию о равновесии как геометрическую, а не физическую науку, Галилей пришел к мысли о преобразовании физического явления, а именно ускоренного движения падающих тел, в математический объект, свойства которого можно изучать с помощью геометрии. Тем самым теория широты качеств оказалась плодотворной при изучении интенсивности движения (т.е. скорости); с помощью нового подхода Галилей преобразовал и эту теорию.
Для того чтобы понять, каким образом рождалось новое понимание науки о природе, интересно проследить, как творчество Галилея соотносится с предшествующим периодом в развитии естествознания. Рассмотренная таким образом физика Галилея оказывается отличной как от средневековой физики, так и от классической механики в ее зрелой форме: она несет в себе черты переходного явления. Но именно это и позволяет разглядеть важнейшие моменты становления науки нового времени.
1. Бесконечное и неделимое. Галилей и Николай Кузанский
В подготовке почвы под фундамент новой науки Галилей опирается на принцип совпадения противоположностей, введенный Николаем Кузанским и разработанный далее Джордано Бруно, и применяет этот принцип при решении проблемы бесконечного и неделимого. Необходимость обратиться к этим фундаментальным понятиям научного и философского мышления вызвана задачей, которую ставит перед собой Галилей, а именно пересмотреть теоретические предпосылки физики и философии Аристотеля. Отвергнув динамику Аристотеля, которая была общей теорией изменения, Галилей ограничил динамику только теорией перемещения.
Но революция в мышлении, произведенная Галилео Галилеем, касается не только перипатетической физики; критика Аристотеля лежит, так сказать, на поверхности во всех сочинениях Галилея, ее нельзя не заметить с первого же взгляда. Еще в конце XIX-начале XX в. было распространено представление, что Галилей в своем отталкивании от Аристотеля и средневековой физики опирается на традицию платонизма и строит свою научную теорию на основе методологических принципов научной программы Платона и пифагорейцев. Особенно много труда на обоснование этой точки зрения было приложено неокантианцами Марбургской школы, в частности П. Наторпом и Э. Кассирером. В пользу этой точки зрения действительно говорит тот факт, что Галилей считает "книгу природы" написанной на языке математики, а потому видит в математике единственно надежный инструмент для построения научной системы физики. В этом, безусловно, сказывается сходство воззрений Галилея и Платона. Однако философско-теоретическое обоснование математики, так же как и ее содержательная интерпретация, у этих двух мыслителей различны. Неокантианцы потому только не уделяли должного внимания этому различию, что - под влиянием того же Галилея и всей опирающейся на него новой науки дали самому Платону и его научной программе не совсем адекватное истолкование, модернизировав греческого философа и представив его как прямого предшественника Галилея и Канта. В результате такого прочтения Платона для Наторпа и Кассирeра оказались в тени также и те моменты в понимании науки, которые связывали Платона с Аристотелем. Происходит смещение реального положения вещей: Галилей становится слишком "платонизированным", а Аристотель превращается в плоского формального логика, не знающего иных методов, кроме силлогизма, и примитивного эмпирика, каким он в действительности никогда не был.
Различия между Галилеем и платоновско-пифагорейской научной программой проходят по той же линии, по какой было намечено различие между Николаем Кузанским, с одной стороны, и Платоном и неоплатониками - с другой. Как и Кузанец, Галилей критикует Аристотеля и уважительно отзывается о Платоне; но, подобно Кузанцу, он в ряде принципиальных вопросов решительно отходит от Платона, и отходит как раз в том направлении, которое было указано Николаем Кузанским. Это легче всего увидеть при рассмотрении проблем бесконечного и неделимого, как они решаются Галилеем.
В "Беседах и математических доказательствах", касаясь вопроса о причинах связности тел, Галилей высказывает несколько гипотетических положений о строении материи и в этой связи оказывается вынужденным поставить проблему континуума. "По моему мнению, - говорит Сальвиати, представляющий взгляды самого Галилея, - связность эта может быть сведена к двум основаниям: одно - это пресловутая боязнь пустоты у природы; в качестве другого (не считая достаточной боязнь пустоты) приходится допустить что-либо связующее, вроде клея, что плотно соединяет частицы, из которых составлено тело". При последующем обсуждении оказывается, что вторую причину нет надобности и допускать, поскольку для объяснения сцепления тел вполне достаточно первой причины. "...Так как каждое действие должно иметь только одну истинную и ясную причину, я же не нахожу другого связующего средства, то не удовлетвориться ли нам одной действующей причиной - пустотою, признав ее достаточность?"
Обсуждение природы пустоты и возможности ее присутствия в телах в виде своего рода пор ("мельчайших пустот") приводит Галилея к той проблеме, которая на протяжении средних веков, как правило, была связана с гипотезой о существовании пустоты, а именно к проблеме непрерывности. Ведь допущение пустот в виде мельчайших промежутков между частями тела требует обсудить вопрос о том, что такое само тело: есть ли оно нечто непрерывное или же состоит из мельчайших "неделимых" и каково, далее, число этих последних конечное или бесконечное?
Вопросы эти широко дискутировались в XIII и особенно в XIV в., и в этом смысле Галилей еще не выходит за рамки средневековой науки в своей постановке этих вопросов. Но вот в решении их Галилей выступает отнюдь не как средневековый ученый. Он допускает существование "мельчайших пустот" в телах, которые и оказываются источником силы сцепления в них. Обратим внимание на интересное отличие Галилея от античных атомистов: у последних пустоты, поры в телах выступали как причина их разрушаемости, почему и надо было Демокриту предположить, что неразделимость атома обусловлена отсутствием в нем пустоты, которая разделяла бы его на части. У Галилея же, напротив, пустота выступает как сила сцепления. О силе пустоты Галилей вслед за средневековыми физиками рассуждает в понятиях Аристотеля, а не атомистов: по Аристотелю, природа "боится пустоты", чем Аристотель и объясняет целый ряд физических явлений, в том числе движение жидкости в сообщающихся сосудах и т.д. К таким же объяснениям прибегали некоторые средневековые физики. Их принимает и Галилей, когда пишет: "Если мы возьмем цилиндр воды и обнаружим в нем сопротивление его частиц разделению, то оно не может происходить от иной причины, кроме стремления не допустить образования пустоты".
Возможность наличия мельчайших пустот в телах Галилей доказывает сначала с помощью физического аргумента, а затем в подкрепление его обращается к аргументу философскому, а именно к вопросу о структуре континуума. К этому переходу побуждает Галилея естественный вопрос: как можно объяснить огромную силу сопротивления некоторых материалов разрыву или деформации с помощью ссылок на "мельчайшие пустоты"? Ведь, будучи мельчайшими, эти пустоты, надо полагать, дают и ничтожную величину сопротивления. Чтобы разрешить возникшее затруднение, Галилей прибегает к допущению, сыгравшему кардинальную роль в становлении науки нового времени. Он заявляет, что "хотя эти пустоты имеют ничтожную величину (заметим, что величину, хоть и ничтожную, они все же имеют. - П.Г.) и, следовательно, сопротивление каждой из них легко превозмогаемо, но неисчерпаемость их количества неисчислимо увеличивает сопротивляемость". Неисчислимость количества ничтожно малых пустот - это в сущности бесконечное множество бесконечно малых, можно сказать, пустот, а можно сказать, сил сопротивления. Потом окажется, что этот метод суммирования бесконечно большого числа бесконечно малых неважно чего: моментов времени, частей пространства, моментов движения и т.д. - является универсальным и необычайно плодотворным инструментом мышления.