— 1024? Ого! Впечатляющий прогресс, — одобрил Хрущёв. — Это как вам удалось на такие цифры выйти? Вроде как по закону Мура должно быть удвоение раз в два года?
— Закон Мура — это не закон в полном смысле слова, а, скорее, эмпирическое наблюдение. — ответил Старос. — Пока количество элементов на кристалле невелико, а техпроцесс не дошёл до нанометров, это количество элементов растёт по экспоненте, особенно на регулярных структурах, вроде памяти.
(в течение 60-х гг. улучшения литографии позволяли увеличивать число транзисторов экспоненциальными темпами. http://www.ixbt.com/cpu/microelectronics.shtml)
— У нас в Зеленограде запущена технологическая линия по выращиванию кристаллов кремния диаметром до 100 миллиметров. Сейчас пытаемся увеличить диаметр выращиваемых кристаллов до 150 миллиметров. Производство очень энергоёмкое, — рассказал сидящий напротив Шокина Берг. — Также мы сделали машину для автоматизированного проецирования фотошаблонов на заготовку микросхемы, так называемый степпер. Пока он существует в нескольких опытных экземплярах, но сейчас готовится его малосерийное производство.
— Кстати, к нам в Зеленоград приезжал товарищ Мазуров, осматривал производство, очень интересовался перспективами и предлагал создать ещё один центр электронной промышленности в Белоруссии. Вот, есть идея наладить там выпуск степперов и фотоповторителей.
— Идею поддерживаю. С Мазуровым вопрос проработайте, я проведу через Президиум и Совет Министров. М-да... До полноценной и массовой полупроводниковой памяти всё равно ещё как до Луны... — со вздохом проворчал Хрущёв.
— Доберёмся и до полупроводниковой, Никита Сергеич, — заверил Берг. — Зато теперь АЛУ станут ещё немного дешевле и проще в сборке. Мы, используя полученную нами от компетентных органов информацию, внедрили две очень важных разработки. Это — транзистор-транзисторная логика и замена алюминиевого затвора в транзисторах на поликремниевый. Есть такая технология, описанная в документах, как симметричное спаривание p— и n-канальных МОП-транзисторов. Она уменьшает потребление энергии при простое, когда транзисторы не переключаются в миллион раз. В документах такая логика называется «комплементарная структура МОП» (КМОП). Вот на этой технологии и основаны разрабатываемые нами микросхемы памяти.
(TTL, в реальной истории появилась в 1963 г. Использование поликремниевого затвора началось с 1968 г и явилось важнейшим прорывом в технологии, позволившим кардинально улучшить стабильность характеристик электронных компонентов http://www.ixbt.com/cpu/microelectronics.shtml)
— Здесь, Никита Сергеич, ещё и работает наша плановая экономика, — пояснил Шокин. — На западе, создавая новый продукт, ждут его коммерческой отдачи. Поэтому они ещё долго будут сидеть на кристаллах диаметром 25-38 миллиметров. А мы, зная тенденции развития, ушли сразу на кристаллы большего диаметра, 100 миллиметров, дальше будет 150. (Когда массовое производство ИС стало исчисляться уже миллионами, оказалось, что с применением пластин большего диаметра себестоимость чипов падает, а массовость растёт — и в 1964 г. введены 25 мм пластины, а через 2 года — на 38 мм. http://www.ixbt.com/cpu/microelectronics.shtml)
— У нас в плане забито увеличение количества элементов, финансирование идёт государственное, и мы этот план выполняем, коммерческой отдачи нам на текущем этапе ждать не надо. Мы все вложенные затраты отбиваем за счёт экономии средств на содержании и обслуживании тех ЭВМ, в которых заменяем устаревшую элементную базу на новую. Тем более, что новые микросборки уже пошли в производство гражданской продукции — радиоприёмников, телевизоров, проигрывателей. Тем более, что полупроводниковая память в серийном производстве будет дешевле памяти на ферритовых кольцах
Шокин достал и показал Хрущёву небольшой транзисторный приёмник. Сняв заднюю стенку, он с гордостью продемонстрировал вместо привычных радиоламп и кондовых советских диодов первых серий аккуратную плату с распаянными на ней прямоугольниками микросборок и новыми, меньшего размера, дискретными элементами.
— Вот. Наша последняя разработка. Уже в продаже, — Александр Иванович не смог удержаться от довольной улыбки.
— Вот это хорошо! Вот это порадовали! — Хрущёв, одобрительно приговаривая, вертел в руках приёмник, рассматривая плату.
— Этот приёмник сделан на элементах предыдущего поколения, но зато они выпускаются серийно. А самое главное — в КБ-2 под руководством товарища Берга собрали опытный образец первого модуля минифабрики для производства микросхем, — порадовал Первого секретаря Шокин. — И на подходе ещё несколько модулей.
— Мы рассчитываем, что к концу этого года первая опытная минифабрика в Зеленограде начнёт работать, — подсказал Берг. — Тогда мы сможем значительно быстрее делать небольшие партии микросборок, и, надеюсь, увеличим выход годных, за счёт того, что в боксах минифабрики поддерживать чистую атмосферу гораздо проще.
— Нам очень помогли атомщики, — добавил Старос, — поделились своими разработками манипуляторов для атомных электростанций. У них, конечно, масштабы побольше, но нам всё не с нуля начинать пришлось. Многие детали манипуляторов попросту уменьшили до нужного нам масштаба, и применили в конструкции минифабрики.
— А что там этими манипуляторами делается? — уточнил Хрущёв.
— Полуфабрикаты микросборок передаются из одного модуля в другой и устанавливаются на технологическую позицию, — пояснил Берг. — Линия должна работать полностью автоматически, чтобы не вносить лишних загрязнений от контакта с человеком. Каждый технологический модуль оснащается входным и выходным шлюзами с микроманипуляторами.
— Когда заработает в полном объёме хотя бы одна минифабрика, — добавил Шокин, — мы сможем заметно быстрее совершенствовать микросборки, ведь производственный цикл на минифабрике будет занимать не месяцы, а дни.
— Если позволите, я после совещания отниму пять минут вашего времени, — сказал Лебедев. — У нас по теме электроники для станков появились интересные наработки.
— Да, да, — добавил Калмыков. — Вам, Никита Сергеич, хорошо бы побывать во Фрязинском НИИ-160, у нас как раз есть, что вам показать.
— Это хорошо, — одобрил Никита Сергеевич. — Обязательно у вас побываю. Мне Владимир Иванович, — он кивнул на Главного конструктора ЭНИМС академика Владимира Ивановича Дикушина (http://www.bmstu.ru/scholars/dikushin_v_i), — показывал свои разработки, в том числе — станки с программным управлением на этих... как их...
— На сельсинах, — подсказал Дикушин. (https://ru.wikipedia.org/wiki/Сельсин)
— Вот! Именно. Спасибо, — поблагодарил Хрущёв. — У такого станка, конечно, есть недостатки. Точность невысокая, а главное — станок нуждается в «обучении». Первую деталь должен сделать на нём вручную токарь высокой квалификации, чтобы станок записал на магнитную ленту его движения, для последующего воспроизведения. Соответственно, если одни и те же детали производятся, скажем, на разных заводах, они будут получаться немного разными и по точности, и по себестоимости, ведь «обучать» станки в разных городах будут разные рабочие. У каждого свои приёмы работы, своя скорость, и своя точность соблюдения допусков.
— Есть такая проблема, — согласился Дикушин. — Мы сейчас над ней работаем совместно с товарищами из ЛИТМО и Зеленограда (АИ)
— На основе полученной от компетентных товарищей информации были разработаны оптические датчики-преобразователи угла поворота в цифровой код (https://ru.wikipedia.org/wiki/Энкодер), — добавил Валерий Дмитриевич Калмыков. — В Зеленограде товарищи Старос и Берг сделали электронный модуль для считывания сигнала с этих датчиков.
— Нас моряки просили сделать им преобразователь сигнала «угол-код», для ввода стрельбовых данных в торпеды, — пояснил Старос. (В КБ-2 с 1956 г. занимались созданием преобразователей «угол-код» КПВК-11 и КПВК-13 одновременно с разработкой макетного образца мини-ЭВМ УМ-1. М. Гальперин. «Прыжок кита» http://memoclub.ru/2014/07/4-pervyiy-um/) Мы им предлагали сразу сделать электронный ввод, но они попросили сделать устройство и для механического шпиндельного ввода тоже, чтобы использовать его с уже имеющимися торпедами.