Литмир - Электронная Библиотека

Кип использует термин Слияние (интеграция) для описания процесса обучения интерпретации таких сигналов. В его случае, когда он получает разнотипную информацию от 300 насекомых, добиться целостного восприятия этого потока, конечно, гораздо труднее, чем просто держать голову так, чтобы электрическое покалывание оставалось в центре языка. Но задача та же, и разница только количественная. «Если у вас есть способность к Слиянию, — говорит Кип, — данные перестают быть данными… а вы просто воспринимаете некий целостный образ-ощущение, точно так же прямо и непосредственно, как воспринимаете то, что идет дождь или что вы находитесь на тропическом пляже».

Управление насекомыми тоже звучит фантастично, но в определенных пределах это уже сейчас возможно. В 2009 году группа ученых под руководством Хиротака Сато с факультета электрических систем и компьютеров (Electrical Engineering and Computer Science) Калифорнийского университета в Беркли информировала общественность, что они разработали имплантат, с помощью которого могли дистанционно управлять полетом жука, используя в качестве пульта управления обычный лэптоп.

Эта технология, названная HIMEMS (Hybrid insect micro-electro mechanical systems — Гибрид насекомого и микро-электромеханических систем), использует электроды, имплантированные в мускулы и нервную систему жука еще на стадии его нахождения в коконе. Когда жук достигает зрелости, его мозг и мускулы уже составляют единое целое с электродами, которые могут управляться с помощью чипа и микробатареи, встроенных на спине насекомого. Сигналы WiFi, подаваемые на чип, могут использоваться для перехвата управления крыльями жука, позволяя оператору менять направление его полета.

Звучит жутковато. Но пресс-релиз Агентства по продвинутым оборонным разработкам (Defense Advanced Research Projects Agency), в котором говорилось о планах использования жуков в качестве носителей сенсоров вроде микрофонов и газоуловителей, доказывает: во всем этом нет ничего невозможного. Агентство поясняет, что мы, в конце концов, веками проделывали похожие вещи с животными, используя менее технологически развитые методы, такие как ярмо для быков или уздечку для лошадей.

Контролировать нервную систему животных можно не только с помощью чипов и WiFi. На ежегодном собрании Американского физического общества, состоявшемся 15–19 марта 2010 года в Портленде, штат Орегон, Андрью Лейфер, аспирант-биофизик из Гарвардского университета, демонстрировал видеоматериалы о том, как ему удалось управлять движениями крошечного червя, называемого Caenorhabditis elegans, используя свет зеленого лазера.

С. elegans был выбран для этих целей, потому что у него имеется всего 302 нейрона и потому что он прозрачный. Последнее обстоятельство важно, поскольку суть экспериментов заключалась в следующем: червь был генетически модифицирован так, чтобы его нейроны активировались при освещении зеленым светом. Если осветить всего червя зеленым светом, то активируются все нейроны сразу. Но если точечно освещать лучом лазера какой-то единственный нейрон, то «включается» только он. На данной стадии это просто исследовательский проект, запущенный с целью изучения того, как работает нервная система червя, имеющая длину всего один миллиметр.

«В нашем распоряжении окажется мощный инструмент, с помощью которого мы сможем с беспрецедентной точностью воздействовать на нейронные цепи, — заявил Лейфер на пресс-конференции. — Мы теперь способны разлагать на составные части нейронные сети и воздействовать на каждый компонент, чтобы узнать, за что он отвечает, для чего служит.

Но с помощью этой технологии он способен также управлять движениями червя, заставляя его изменить курс, повернуть направо или налево или попятиться назад».

«То есть вы можете играть на черве, как на пианино», — прокомментировал один репортер.

Самое трудное, по словам Лейфера, было научиться фокусировать крошечное, размером с нейрон пятнышко света на крошечном же извивающемся тельце червя. Но в конечном итоге была разработана конструкция из 700 000 независимо управляемых зеркал, которая позволяла нацеливать луч лазера в любом желаемом направлении, изменяя его — направление — за каких-то 20 миллисекунд.

«Я потратил шесть месяцев, чтобы написать соответствующую программу», — заявил Лейфер.

Вытеснит ли эта технология технологию HI-MEMS в деле управления насекомыми-киборгами? Кто знает? Эксперименты Лейфера стали возможными потому, что червячок С. elegans прозрачен. Но для лазерного контроля это не является необходимым условием, заметил еще один участник конференции, специалист по исследованиям мозга. Вместо того, чтобы активировать генетически модифицированные нейроны, освещая их зеленым светом, сказал он, достаточно вживить электроды в мозг насекомого, а к каждому электроду присоединить такую же миниатюрную фоточувствительную ячейку. Требуемые нейроны могут после этого активироваться лучом света. Этот метод обладает тем преимуществом, что используются сигналы, которые не могут быть засечены прослушивающими станциями противника, работающими на радиочастотах. Зато большим его недостатком является необходимость работать на дистанции прямой видимости и с лазером, способным очень быстро менять наводку. Похоже, все-таки самым лучшим вариантом будет WiFi.

Подзарядка насекомых

В нынешних экспериментах с насекомыми-киборгами передвижение курсора на экране лэптопа управляет движениями лишь одного насекомого. Но Кип командует сразу сотнями насекомых с помощью имплантата-татуировки. Тут опять используется несколько разных технологий.

Начать с того, что этот имплантат может за счет процессов метаболизма в организме Кипа перезаряжать батареи, питающие микроэлектронику его насекомых. А нужда в такой подзарядке будет возникать довольно часто — поскольку насекомое может нести аккумуляторную батарею очень ограниченного веса и, стало быть, емкости.

Но, скорее всего, это будут не привычные аккумуляторы или одноразовые батарейки. Более вероятно, что начнут использовать некий сверхконденсатор, который не вырабатывает электричество благодаря химическим процессам, как это происходит в обычных батарейках, а накапливает его.

«Большие конденсаторы, уже сейчас используемые в Китае, согласно предположениям, способны обеспечивать пробег городского автобуса в пятьдесят километров между подзарядками», — говорит Сайкат Талапатра, специалист в области физики конденсированных веществ из Университета Южного Иллинойса.

Но сейчас разрабатываются новые конденсаторы. Группа Талапатры работает с тончайшими пленками сверхпрочного углеродного материала, называемого графен. Эти пленки имеют толщину в один атом и способны накапливать большое количество электрических зарядов на грамм вещества. Эти конденсаторы к тому же можно будет очень быстро перезаряжать — точно так же, как Кип подзаряжал батареи своих насекомых, заставляя их парить на небольшом расстоянии от «электростанции» в его татуировке.

Первичным источником энергии этой «электростанции» являются биохимические процессы, проходящие в организме Кипа. А такая технология, как не удивительно, уже существует (по крайней мере, на стадии разработки).

В 2008 году фирма «Гринер Гаджетс Дизайн Компетишн» (The Greener Gadgets Design Competition) объявила о создании сотового телефона, наносящегося на кожу в виде татуировки и «подпитывающегося от пиццы». Технически телефон, конечно же, не от сыра или сладкого перца подзаряжается. Скорее, он работает на глюкозе, благодаря элементу питания размером с монету, который встроен в систему кровообращения пользователя такого телефона. Из крови эта ячейка извлекает кислород и глюкозу для выработки электричества.

Сам же сотовый телефон состоит из двух частей. Одна из них — это тонкая, гибкая пленка кремния, вшитая под кожу. В ней размещается собственно электроника, которую и питает работающая на крови ячейка. Другая часть — это сама татуировка, являющаяся невидимой, пока в ней не возникнет нужда, то есть пока сигнал от кремниевой пленки не высветит на коже клавиатуру и обзорный экран (звук, похоже, исходит непосредственно от имплантата).

21
{"b":"539209","o":1}