Литмир - Электронная Библиотека

Классическая физика должна была прибегать к искусственным предположениям лишь для того, чтобы объяснить, почему эти вещества при охлаждении становятся диэлектриками, а по мере повышения температуры приобретают способность проводить электрический ток. Но дальнейший нагрев не превращал их в металлы.

Позже пришлось признать, что существуют вещества, не превращающиеся в диэлектрики даже при приближении температуры к абсолютному нулю. Но они и при нагревании не приобретали присущей металлам способности хорошо проводить электрический ток. Их назвали полуметаллами, но никакой ясности не возникло.

Распутать этот клубок, в котором сплелись многие нити, смогла лишь квантовая физика. Она показала, что внутри вещества электроны могут обладать весьма различной энергией. Если они обладают малой энергией, то прочно связаны с атомами. Нужно придать им большую дополнительную энергию, чтобы оторвать от атомов и сообщить способность мигрировать внутри вещества. Такие вещества не проводят электрический ток. Они также плохо передают тепло. Это диэлектрики.

В этом крайнем случае квантовая теория даёт то же самое, что и классическая теория, добавляя лишь менее существенные детали поведения вещества и позволяя разобраться в том, как это поведение зависит от внешних воздействий.

В другом крайнем случае, в металлах, электроны разделены на две части. Большинство из них обладает малой энергией, и они тесно связаны с атомами. Остальные обладают сравнительно большой энергией. Такой, что напряжение слабенькой батареи легко отрывает их от «родного» атома, и они свободно переходят от одного атома к другому, несмотря на то что энергия электрона меньше, чем энергия, связывающая его с ближайшим атомом. Это электроны проводимости, участвующие в передаче электрического тока. Эти же электроны участвуют в передаче тепла, обеспечивая металлам большую теплопроводность.

Новая картина близка к представлению классической физики о свободном электронном газе, но позволяет более подробно описать процесс взаимодействия электронов проводимости с атомами металла.

Квантовая теория легко объясняет отличие полупроводников от металлов, полуметаллов от диэлектриков. В полупроводниках большинство электронов обладает малой энергией, и потому они тесно связаны с атомами и не участвуют в передаче электрического тока. Наряду с ними в по лупроводниках, при комнатной температуре, есть малая часть электронов, энергия которых не намного превышает энергию остальных электронов. Эти электроны могут перемещаться внутри полупроводника, обеспечивая им некоторую способность проводить электрический ток и теплоту.

Физики говорят, что между двумя группами электронов, точнее, между их энергиями существует запрещённая зона. Иногда её называют энергетической щелью. Почему? Да потому, что в полупроводнике нет электронов, энергия которых лежала бы внутри запрещённой зоны, внутри энергетической щели, отделяющей электроны, участвующие в образовании электрического тока от всех остальных. Мы уже встречались с «энергетической щелью», знакомясь с отрывками из нобелевской лекции Гиавера.

При нагревании не все электроны приобретают одинаковую дополнительную энергию. На долю одних приходятся меньшие порции энергии, и они остаются вблизи своих атомов. На долю других выпадает достаточное количество для того, чтобы они перескочили через запрещённую зону в зону проводимости. Так при нагревании увеличивается способность полупроводника пропускать электрический ток, их электрическое сопротивление ослабевает.

Более подробное рассмотрение движения электрона в кристалле показывает, что оно связано с движениями соседних атомов. В результате с движущимся электроном связана масса, превосходящая массу самого электрона. Имея это в виду, физики говорят, что электрон, движущийся в кристалле, является квазичастицей, то есть как бы частицей, масса которой зависит от свойств кристалла.

Так мы снова повстречались с квазичастицами, но не как с любопытной гипотезой или экзотической теорией. В этом случае они являются обыкновенными электронами проводимости, превратившимися в квазичастицы в результате взаимодействия с атомами кристалла.

РАЗБЕГ

В начале семидесятых годов физики и химики активно изучали окислы металлов, а также керамики, получаемые обжигом комбинаций различных окислов. Были среди них и керамики, пропускавшие электрический ток.

В 1973 году впервые была изготовлена керамика, обладающая электропроводностью, типичной для металлов. Для того чтобы убедиться в этом, требовалось провести исследование зависимости электропроводности от температуры.

В 1979 году учёные Института общей и неорганической химии АН СССР (ИОНХ) изготовили керамики из окислов меди, редкоземельного элемента лантана и одного из щёлочноземельных элементов — кальция, бария или стронция. Они показали, что эти керамики имеют зависимость электропроводности от температуры, типичную для металлов.

В этом же году Ф. Стеглич и его сотрудники сообщили, что керамика, состоящая из окислов меди, кремния и церия, превращается в сверхпроводник при очень низкой температуре, равной 0,5К. Они показали, что в этой керамике электроны становятся квазичастицами с необычно большой массой, на два порядка превышающей массу свободного электрона.

Прошло пять лет, и к 1984 году Клод Мишель и Бернар Рави исследовали керамику (на основе окислов бария, лантана и меди) на её способность проводить ток от гелиевых температур до азотных и не обнаружили в ней сверхпроводимости. Только после открытия Беднорца и Мюллера стала ясна причина неудачи: они прокаливали свои образцы на воздухе, в присутствии кислорода! А для появления высокотемпературной сверхпроводимости следует прокаливать их так, чтобы в них возникал некоторый дефицит кислорода. Требуется и небольшой дефицит лантана.

Так это началось. Началось покорение высокотемпературной сверхпроводимости.

Вскоре оказалось, что соединения двух металлов, один из которых уран, а второй бериллий или платина, тоже становятся сверхпроводниками за счёт превращения части электронов в сверхтяжёлые квазичастицы. Но осталось неизвестным, как эти квазичастицы взаимодействуют при появлении сверхпроводимости.

Затем были обнаружены удивительные сверхпроводники с очень малой концентрацией свободных электронов.

Фурор произвело обнаружение предсказанных Гинзбургом и Литтлом тонких сверхпроводящих полимерных плёнок и волокон. Сперва это были плёнки и волокна из неорганических материалов, а затем плёнки и волокна из органических соединений.

Правда, все они становились сверхпроводниками при очень низких температурах.

Так происходило новое постепенное проникновение учёных в страну сверхпроводимости. При этом выяснилось, что далеко не все эксперименты могли быть объяснены на основе существующей теории сверхпроводимости, основанной на спаривании электронов, обменивающихся фононами при движении внутри решётки кристаллов.

Наконец наступил 1986 год, когда Беднорц и Мюллер обнаружили, что керамика из окислов меди, лантана и бария становится сверхпроводящей при неожиданно высокой температуре: 40 K.

Эта керамика была подобна той, в которой сотрудники ИОНХ обнаружили металлическую электропроводность.

Можно представить себе, как они теперь сожалеют, что не продолжили свои исследования в области более низкой температуры. Ведь они упустили Нобелевскую премию, которую получили Беднорц и Мюллер за беспримерный скачок к высокотемпературной сверхпроводимости.

Появление журнала со статьей Беднорца и Мюллера вызвало не только интерес, но настоящий шквал экспериментов и теоретических соображений.

Ведь изготовление керамик не требует ни дорогого сырья, ни сложной аппаратуры. Уже известен десяток методов, некоторыми из них может воспользоваться даже школьник. Нужно лишь, чтобы в химической лаборатории были соответствующие окислы или такие соединения (например, нитраты или карбонаты), из которых могут быть получены эти окислы.

15
{"b":"539160","o":1}