Универсальность физических систем служит отправкой точкой всей научной космологии. Изучение звездного неба показывает, что звезды очень похожи на наше Солнце, а другие галактики напоминают наш Млечный Путь как по размерам, так и по структуре. Более детальный анализ свидетельствует, что удаленные тела состоят из тех же атомов, какие встречаются на Земле. «Земной» атом совершенно неотличим от атома на самом краю наблюдаемой Вселенной. Физические процессы, происходящие в наиболее удаленных областях космоса, по-видимому, абсолютно идентичны процессам в ближнем космосе. При этом особенно важно, что сами взаимодействия оказываются универсальными. Например, силу электромагнитного взаимодействия в удаленных квазарах можно определять на основе тщательного изучения их оптических спектров. При этом не обнаруживается заметного различия с электромагнитными взаимодействиями, наблюдаемыми в лабораторных условиях.
По мере того как астрономы расширяли свои горизонты, охватывая все более обширные области Вселенной, они, как правило, обнаруживали почти одно и то же. Почему так должно быть, совсем не ясно. Несколько столетий назад люди считали, что Земля – центр мироздания, уникальный по своему местоположению и форме. Однако со времен Коперника весь опыт стал говорить об обратном: Земля – типичная планета в типичной галактике, расположенная в типичной области Вселенной, и вообще Вселенная состоит из огромного числа более или менее сходных объектов.
Ученые сформулировали эти представления в виде так называемого «космологического принципа», который, попросту говоря, утверждает, что ближний космос является типичным образцом Вселенной в целом. Это относится не только к атомам, звездам и галактикам, но и ко всей организации Вселенной, а также к распределению вещества и энергии. Вселенная чрезвычайно однородна относительно распределения галактик в пространстве как по удаленности, так и по направлению. Насколько можно судить, в космосе отсутствуют какие-либо выделенные области или направления. Более того, эта однородность сохраняется с течением времени по мере расширения Вселенной; скорость расширения одинакова для всех областей пространства и всех направлений. Действительно, довольно трудно представить более простое устройство Вселенной, совместимой с существованием живых существ. В предыдущих главах – в рамках так называемой инфляционной теории эволюции Вселенной – приводились весьма убедительные основания для подобной крупномасштабной согласованности.
Таким образом, наука рисует картину однородной, самосогласованной и простой в больших масштабах Вселенной. Если бы Вселенная расширялась с существенно разными скоростями в различных направлениях или имела области, сильно отличающиеся по плотности или распределению вещества, то вряд ли вообще существовала бы научная космология. (Строго говоря, наверное, не существовало бы и самих ученых.) Именно эти три особенности Вселенной – однородность, самосогласованность и простота – позволяют говорить о Вселенной как едином целом. До самого последнего времени природа этих особенностей Вселенной оставалась загадкой. Теперь мы знаем, что «инструкции» для создания самосогласованного, однородного космоса заключены в законах физики. Свойства Суперсилы определили развитие ранней Вселенной и организацию ее единой структуры, отличающейся простотой в больших масштабах.
Принцип Маха: связь между большим и малым
Хотя мы все готовы признать присущее Вселенной всеобъемлющее единство формы, существует настоятельное желание обнаружить более глубокое космическое единство – то, которое самым тесным образом «сплетает» воедино ближайшую нам локальную часть мира со всей необъятной Вселенной. Идея связи большого и малого, глобального и локального обладает большой притягательной силой, поскольку заставляет нас чувствовать свое единство со всем мирозданием, испытывать таинственное стремление к общности, свойственное большинству религии. Многие люди, несомненно, чувствуют себя духовно связанными со всей совокупностью существующих в мире объектов, и в науке также существует традиция настойчивого поиска таких связей.
Один из первых научных аргументов в пользу существования глубокой связи между структурой Вселенной в больших масштабах и локальной физикой был провозглашен австрийским физиком и философом Эрнстом Махом (1838—1916), который навечно вошел в историю науки благодаря «числу Маха» (единица измерения скорости звука). Несмотря на некоторые ошибочные взгляды Маха (например, он не верил в реальность атомов), его труды, посвященные природе инерции и позднее обобщенные под названием «принцип Маха», оказались одной из наиболее прочных научных теорий. Без сомнения, идеи Маха оказали глубокое влияние на молодого Эйнштейна в его попытках сформулировать общую теорию относительности. В письме, написанном в июне 1913 г. вслед за публикацией в предшествующем году книги Маха «Наука механики», Эйнштейн признавал, что многим обязан Маху.
Мах родился в городе Турасе на территории нынешней Чехословакии. Он занимал профессорские кафедры как по математике, так и по физике в университете в Граце. Позднее Мах переехал в Прагу, а потом – в Вену, где получил должность профессора философии; здесь он присоединяется к философскому течению, получившему название позитивизма. Мах полагал, что действительность следует привязывать к наблюдениям, и именно эта точка зрения легла в основу его космологических представлений.
Мах глубоко интересовался природой движения, в частности, вопросом о различии между реальным и кажущимся движением. Наши предки верили, что небеса вращаются вокруг Земли, что Земля покоится в центре Вселенной, а Солнце, Луна и звезды движутся по криволинейным траекториям. Это казалось совершенно естественным, поскольку небесные тела совершали по небу видимое движение. В XVII в. подобные идеи были, однако, отвергнуты, так как выяснилось, что движение небесных тел всего лишь кажущееся. В действительности же вращается сама Земля.
Как можно было убедить скептика, что вращение звезд лишь кажущееся и что именно Земля вращается вокруг своей оси? Можно было бы, например, обратиться к механике Ньютона. Вследствие вращения Земли возникают «центробежные эффекты», которые вызывают утолщение земного шара в районе экватора. Тщательные измерения размеров Земли показывают, что ее диаметр по экватору на 43 км превышает расстояние между полюсами. Причина того, что вращение Земли вызывает ее утолщение на экваторе, кроется в существовании инерции.
Инерция – свойство вещества, хорошо всем нам знакомое. Тяжелые предметы обладают большой инерцией; это означает, что их трудно привести в движение, однако если это произошло, то их трудно остановить. Легкие предметы передвигать гораздо проще. Именно инерцией обусловлено движение Земли в пространстве. При отсутствии инерции Земля остановилась бы на своей орбите и упала на Солнце. Инерция выбрасывает нас из сиденья при резком торможении автомобиля, она заставляет нас почувствовать, как что-то обрывается в желудке при резком движении лифта. Именно инерция отбрасывает нас к внешнему ободу вращающейся карусели или прижимает к стенке вращающейся центрифуги. Инерция разрывает слишком быстро вращающийся маховик, именно эта тенденция сбрасывать с себя вещество (ее иногда называют центробежной силой) приводит к утолщению Земли на экваторе.
Как связать силу инерции с другими силами природы? Эта загадка восходит к самому Ньютону и данному им впервые систематическому описанию закона движения. Главным моментом работы Ньютона явилось признание относительности равномерного движения (происходящего с постоянной скоростью). Вообразите, что вы заключены в закрытую непрозрачную кабину, движущуюся в глубинах пространства. Не существует никакого способа, который помог бы вам выяснить, покоится кабина или движется равномерно. Такие условия вполне воспроизводятся на борту самолета, совершающего горизонтальный полет. Наше ощущение силы и движения на борту самолета неотличимы от аналогичных ощущений в помещении на Земле. Равномерное движение самолета никак не влияет на поведение тел внутри самолета, в частности на то, как пассажиры передвигаются, едят, дышат – все эти и другие действия выглядят, как обычно.