Успехи теории инфляции
После того как Гут выдвинул основополагающую идею о том, что Вселенная претерпела ранний период чрезвычайно быстрого расширения, стало очевидно, что такой сценарий позволяет красиво объяснить многие особенности космологии Большого взрыва, которые ранее принимались «на веру».
В одном из предшествующих разделов мы встретились с парадоксами очень высокой степени организации и согласованности первичного взрыва. Один из замечательных примеров тому – сила взрыва, которая оказалась точно «подогнанной» к величине гравитации космоса, вследствие чего скорость расширения Вселенной в наше время очень близка к граничному значению, разделяющему сжатие (коллапс) и быстрое разбегание. Решающая проверка инфляционного сценария как раз и состоит в том, предусматривает ли он Большой взрыв настолько точно определенной силы. Оказывается, что благодаря экспоненциальному расширению в фазе инфляции (что составляет ее самое характерное свойство) сила взрыва автоматически строго обеспечивает возможность преодоления Вселенной собственной гравитации. Инфляция может привести именно к той скорости расширения, которая наблюдается в действительности.
Другая «великая загадка» связана с однородностью Вселенной в больших масштабах. Она также немедленно решается на основе теории инфляции. Любые первоначальные неоднородности в структуре Вселенной должны абсолютно стираться при грандиозном увеличении ее размеров, подобно тому, как складки на спущенном воздушном шаре разглаживаются при его надувании. А в результате увеличения размеров пространственных областей примерно в 10^50 раз любое начальное возмущение становится несущественным.
Однако неверно было бы говорить о полной однородности. Чтобы стало возможным появление современных галактик и галактических скоплений, структура ранней Вселенной должна была иметь некоторую «комковатость». Первоначально астрономы надеялись, что существование галактик можно объяснить скоплением вещества под действием гравитационного притяжения после Большого взрыва. Облако газа должно сжиматься под действием собственной гравитации, а затем распадаться на более мелкие фрагменты, а те в свою очередь – на еще меньшие и т.д. Возможно, распределение газа, возникшее в результате Большого взрыва, было совершенно однородным, но за счет чисто случайных процессов то там, то здесь возникали сгущения и разрежения. Гравитация еще более усиливала эти флуктуации, приводя к разрастанию областей сгущения и поглощению ими добавочного вещества. Затем эти области сжимались и последовательно распадались, а сгущения наименьших размеров превращались в звезды. В конце концов, возникла иерархия структур: звезды объединялись в группы, те – в галактики и далее в скопления галактик.
К сожалению, если в газе с самого начала не было неоднородностей, то такой механизм возникновения галактик сработал бы за время, значительно превышающее возраст Вселенной. Дело в том, что процессы сгущения и фрагментации конкурировали с расширением Вселенной, которое сопровождалось рассеянием газа. В первоначальном варианте теории Большого взрыва предполагалось, что «зародыши» галактик существовали изначально в структуре Вселенной при ее возникновении. Более того, эти начальные неоднородности должны были иметь вполне определенные размеры: не слишком малые, иначе никогда бы не образовались, но и не слишком большие, иначе области большой плотности просто испытали бы коллапс, превратившись в огромные черные дыры. При этом совершенно непонятно, почему галактики имеют именно такие размеры или почему в скопление входит именно такое число галактик.
Инфляционный сценарий дает более последовательное объяснение галактической структуры. Основная идея достаточно проста. Инфляция обусловлена тем, что квантовым состоянием Вселенной является неустойчивое состояние ложного вакуума. В конце концов, это состояние вакуума распадается, и избыток его энергии превращается в теплоту и вещество. В этот момент космическое отталкивание исчезает – и инфляция прекращается. Однако распад ложного вакуума происходит не строго одновременно во всем пространстве. Как и в любых квантовых процессах, скорости распада ложного вакуума флуктуируют. В некоторых областях Вселенной распад осуществляется несколько быстрее, чем в других. В этих областях инфляция завершится раньше. В результате этого неоднородности сохраняются и в конечном состоянии. Не исключено, что эти неоднородности могли служить «зародышами» (центрами) гравитационного сжатия и, в конце концов, привели к образованию галактик и их скоплений. Проводилось математическое моделирование механизма флуктуаций, однако, с весьма ограниченным успехом. Как правило, эффект оказывается слишком большим, вычисленные неоднородности – слишком значительными. Правда, использовались слишком грубые модели и, возможно, более тонкий подход оказался бы более успешным. Хотя теория пока далека от завершения, она, по крайней мере, описывает характер механизма, который мог бы привести к возникновению галактик без необходимости введения специальных начальных условий.
В предложенном Гутом варианте инфляционного сценария ложный вакуум вначале превращается в «истинный», или в вакуумное состояние с наинизшей энергией, которое мы отождествляем с пустым пространством. Характер этого изменения вполне аналогичен фазовому переходу (например, из газа в жидкость). При этом в ложном вакууме происходило бы случайное образование пузырьков истинного вакуума, которые, расширяясь со скоростью света, захватывали бы все большие области пространства. Чтобы ложный вакуум мог просуществовать достаточно долго и инфляция совершила бы свое «чудотворное» дело, эти два состояния должны быть разделены энергетическим барьером, сквозь который должно произойти «квантовое туннелирование » системы, аналогично тому, как это происходит с электронами (см. гл. 2). Однако у этой модели есть один серьезный недостаток: вся энергия, выделившаяся из ложного вакуума, оказывается сконцентрированной в стенках пузырьков и отсутствует механизм ее перераспределения по всему пузырьку. При столкновении и слиянии пузырьков энергия в конечном счете накапливалась бы в беспорядочно перемешанных слоях. В результате Вселенная содержала бы очень сильные неоднородности, и вся работа инфляции по созданию крупномасштабной однородности потерпела бы крах.
При дальнейшем усовершенствовании инфляционного сценария эти трудности удалось обойти. В новой теории отсутствует туннелирование между двумя состояниями вакуума; вместо этого параметры выбираются так, что распад ложного вакуума происходит очень медленно и, таким образом, Вселенная получает достаточное время для инфляции. Когда же распад завершается, энергия ложного вакуума высвобождается во всем объеме «пузыря», который быстро нагревается до 10^27 К. Предполагается, что вся наблюдаемая Вселенная содержится в одном таком пузыре. Таким образом, в ультрабольших масштабах Вселенная может быть крайне нерегулярной, но доступная нашему наблюдению область (и даже значительно более крупные части Вселенной) находится в пределах полностью однородной зоны.
Любопытно, что Гут первоначально разрабатывал свою инфляционную теорию для решения совершенно другой космологической проблемы – отсутствия в природе магнитных монополей. Как показано в гл.9, стандартная теория Большого взрыва предсказывает, что в первичной фазе эволюции Вселенной монополи должны возникать в избытке. Они, возможно, сопровождаются их одно– и двумерными аналогами – странными объектами, имеющими характер «струны» и «листа». Проблема заключалась в том, чтобы избавить Вселенную от этих «нежелательных» объектов. Инфляция автоматически решает проблему монополей и другие аналогичные проблемы, поскольку гигантское расширение пространства эффективно уменьшает их плотность до нуля.
Хотя инфляционный сценарий разработан только частично и всего лишь правдоподобен, не более, он позволил сформулировать ряд идей, обещающих безвозвратно изменить облик космологии. Теперь мы не только можем предложить объяснение причины Большого взрыва, но и начинаем понимать, почему он был столь «большим» и почему принял такой характер. Мы можем теперь приступить к решению вопроса о том, каким образом возникла крупномасштабная однородность Вселенной, а наряду с ней – наблюдаемые неоднородности меньшего масштаба (например, галактики). Первичный взрыв, в котором возникло то, что мы называем Вселенной, отныне перестал быть загадкой, лежащей за пределами физической науки.