Установившееся планирование.
С самолетом понятно, у него есть двигатель. А за счет какой силы летит планер или параплан? Все дело в том, что установившийся полет планера не горизонтален. Планер "скользит" по наклонной траектории, и вместо двигателя работает проекция силы тяжести. Здесь идеально подходит аналогия с шариком, который скатывается по наклонной плоскости (рис. 11). Шарик движется за счет неуравновешенной проекции силы тяжести.
Пусть планер летит по траектории, имеющей угол Y с горизонтом. Вектор скорости уже не перпендикулярен силе тяжести, и имеет с ней угол. Подъемная сила всегда перпендикулярна вектору скорости. В итоге получаем систему сил (рис. 12).
Режим установившийся, поэтому сумма всех сил равна нулю.
G+Y+X=0 (7)
В проекциях на скоростную систему координат:
oyY - Gcos() = 0 => Y = Gcos() (8)
oxX - Gsin() = 0 => X = Gsin() (9)
Так как угол Y обычно мал, то приближенно можно считать, что
cos() = l, а Y = G
Итак, безмоторный летательный аппарат летит с постоянным снижением. От чего зависит скорость снижения? Из рисунка 12 можно найти проекции скорости на вертикальную и горизонтальную оси земной системы координат.
Vгор = Vcos() = V (10)
Vсн = Vsin() (11)
Чем меньше угол Y, тем меньше скорость снижения. Как мы уже выяснили, угол Y образуется из-за необходимости компенсировать силу сопротивления. Соответственно, уменьшение силы сопротивления уменьшает скорость снижения.
В аэродинамике используется понятие аэродинамического качества, равного отношению коэффициентов подъемной силы и силы сопротивления.
К = Су/СX. (12)
Из формул (2 и 3 ) получаем:
Cy/Cx = Y/X (13)
Тогда
KCy/Cx = Y/X = tg() (14)
Аэродинамическое качество показывает, во сколько раз подъемная сила больше силы сопротивления. Так, при качестве 5 и весе пилота с парапланом в 100 кг, получаем:
У = 100 кг; Х = 20 кг.
С помощью аэродинамического качества, можно узнать какое расстояние пролетит пилот с имеющейся высоты (рис. 13). При качестве 5 пилот со 100 м пролетит 500 м.
Очевидно, что один из путей совершенствования летательных аппаратов увеличение качества. У современных планеров качество превышает 50. А у спортивных парапланов оно приближается к 9. Установившийся набор высоты.
Самолеты не только планируют, летают горизонтально, но и набирают высоту (имеется ввиду набор высоты в спокойном воздухе за счет тяги двигателя). На параплане такой режим возможен при полете с парамотором и буксировке за лебедкой. В этом случае движение так же происходит по наклонной траектории, но "в горку".
Y+G+X+T = 0 (15)
В проекциях на оси:
oy Y-Gcos() = 0 ° => Y = Gcos() (8)
ох Х-Т sin() = 0 => T = X+Gsin() (9)
Сила тяги уравновешивает силу сопротивления и проекцию силы тяжести. Чем больше сила тяги, тем больший угол подъема она обеспечивает.
3. Скорость полета. Управление скоростью.
Диапазон скоростей полета.
Диапазон полетных скоростей параплана.
В предыдущих разделах мы считали, что летательный аппарат летит с какой-то определенной скоростью. От чего зависит скорость полета? В каких пределах меняется? Как ею управлять? С какой скоростью летать? В этой главе Вы получите ответы на все эти вопросы.
Скорость полета параплана.
Представьте себе, что вы взлетели. Успокоившись после суматохи старта, ваш параплан летит с постоянной скоростью (наступило равновесие сил). От чего зависит скорость полета? Вспомним уравнение установившегося планирования.
Y = G cos()
Подъемную силу можно определить по формуле:
Y = Cy
Объединяя уравнения, получаем формулу для определения скорости полета:
V2 =
Из формулы видно, что скорость постоянна, пока постоянны все остальные параметры уравнения (полетный вес G, коэффициент подъемной силы Су, площадь крыла S, плотность воздуха) При их изменении равновесие сил нарушается. Полет перестает быть установившимся. Происходит переходный режим полета, во время которого меняется скорость полета и восстанавливается равновесие сил. В результате параплан переходит к новому (!) установившемуся режиму полета.
Пример: Вернемся к полетам. Представьте, что во время полета вам захотелось пошутить. В голову приходит отличная (банальная) идея окатить своих наземных друзей водичкой. Реализуя этот веселый проект, вы сбрасываете с параплана некую резиновую емкость с водой. На земле кто-то радуется, что это был не камень, а у вас происходит переходный процесс. Полетный вес уменьшился, подъемная сила осталась прежней. Равновесие сил нарушено - параплан тянет вверх. Это конечно не плохо, но равновесие нарушено и в другой паре сил. Сила сопротивления теперь больше, чем проекция уменьшившейся силы тяжести, и тянет параплан назад. Происходит торможение. Скорость полета снижается. Из-за этого аэродинамические силы уменьшаются и возвращаются к состоянию равновесия. Вы продолжаете полет на меньшей скорости, любуясь последствиями бомбардировки.
Итак, у нас появилась возможность проанализировать за счет чего и в каких пределах можно менять скорость полета.
Влияние полетного веса и площади крыла.
Часто можно услышать шутки над тяжелыми пилотами по поводу их летучести. Между тем, тяжелые пилоты создают меньшее удельное сопротивление и летают даже лучше легких! Им просто нужен большой параплан.
Вес и площадь связаны через величину удельной нагрузки:
=G/S
Если удельные нагрузки парапланов равны, то их скорости одинаковы. Легкий пилот на маленьком параплане будет лететь так же, как тяжелый - на большом.
Изменение удельной нагрузки часто используется спортсменами. Для увеличения веса применяют балласт - воду, заливаемую в специальный мешок. При необходимости балласт сливают (иногда на соперника). Увеличение веса на 10% приводит к увеличению скорости на 5%.
Нагруженный параплан летит быстрее и лучше управляется. Из-за повышенного давления в крыле у него реже происходят складывания. К сожалению, увеличение скорости полета вызывает возрастание скорости снижения.
С недогруженным парапланом легче летать в слабых условиях (меньше снижение). Но такой параплан хуже управляется и чаще складывается. С ним сложнее взлетать в сильный ветер из-за высокой "парусности".