Литмир - Электронная Библиотека

Исследования Колмогорова по интерпретации интуиционистской логики развивались параллельно с усилиями выдающего голландского логика, ученика и последователя Брауэра А. Гейтинга. Многие идеи этих учёных оказались очень близкими. Однако в логической литературе до недавнего времени имя Колмогорова в этой связи почти не упоминалось. Мне кажется очень важным, что, восстанавливая историческую справедливость, два выдающихся представителя голландской школы, ученики Гейтинга Д. ван Дален и А. Трулстра в своей недавней великолепной двухтомной монографии [13] ввели в употребление термин «интерпретация Брауэра-Гейтинга-Колмогорова».  С именем Трулстры связана и недавняя публикация писем Колмогорова Гейтингу ([14–15]). Письма эти были обнаружены Трулстрой в архивах А. Гейтинга. Профессор Трулстра, с которым я состоял в течение ряда лет в дружеской переписке, любезно прислал мне копии этих бесценных исторических документов, относящихся к началу 30-х годов. Естественно, было бы крайне интересно найти письма Гейтинга к Колмогорову в бумагах последнего. К сожалению, если я не ошибаюсь, это оказалось невозможным. Тем временем В.А. Успенский предложил опубликовать русские переводы писем Колмогорова (оригиналы написаны на немецком и французском языках) в Успехах Математических Наук, что и было сделано с любезного согласия профессора Трулстры. Корреспонденция между Колмогоровым и Гейтингом, даже доступная только частично, проливает новый свет на раннюю историю интуиционизма и на личности обоих выдающихся учёных.

Как это случилось и с работой 1925 года, новая работа Колмогорова по интуиционистской логике осталась малоизвестной. По-видимому, Клини не знал об этой работе, когда он писал свою знаменитую статью о реализуемости [16].  Семантика реализуемости, оказавшаяся столь плодотворной, перекликается с ранними идеями Колмогорова из [10].

Вообще есть какая-то тайна в судьбе этих двух работ. Несмотря на всемирную репутацию их автора, они остались практически неизвестными за пределами России. Как уже говорилось, многие результаты были переоткрыты другими исследователями. Даже и сейчас, как я мог убедиться после своего переезда в США, значение и само существование этих работ неизвестно многим первоклассным экспертам на Западе. Можно надеяться, что статья Успенского, опубликованная по-английски и в одном из самых читаемых логических журналов, поможет исправить эту достойную сожаления ситуацию[xviii].

5. Дальнейшая часть обзора Успенского посвящена трудам Колмогорова по общей теории алгоритмов и алгоритмическим основаниям теории вероятностей. Следует сказать, что В.А. Успенский принял самое живое участие в этой деятельности А.Н. Колмогорова. Широко известная ныне общая концепция алгоритма, задуманная Колмогоровым и реализованная им совместно с Успенским, по-видимому даёт наиболее общее точное описание интуитивных алгоритмов. Алгоритмы, подпадающие под эту концепцию, обычно называют алгоритмами Колмогорова-Успенского. Я специально подчёркиваю это обстоятельство, не отмеченное В.А. по понятным причинам. Определение Колмогорова-Успенского оказалось очень плодотворным, как с точки зрения приложений (теория сложности), так и с точки зрения оснований математики. Если в других классических точных определениях (машина Тьюринга, рекурсивные функции, нормальные алгорифмы Маркова и т.д.) ставилась задача воспроизвести работу любого интуитивного математического алгоритма посредством некоторого алгоритма из данного точного класса (возможность всегда достичь этой цели и провозглашалась Тезисом Чёрча, тезисом Тьюринга, принципом нормализации и т.д.), то определение Колмогорова-Успенского пытается непосредственно представить наиболее общие мыслимые математические алгоритмы. Анализ природы финитарных процессов, приводящий к упомянутому определению, представляет большой методологический интерес. Некоторые авторы полагают даже, что этот анализ доставляет легитимное доказательство Тезиса Чёрча (см. интересную работу Мендельсона [20]).

Несомненный исторический интерес представляют замечания Успенского о семинаре «Рекурсивная Арифметика», которым Колмогоров пригласил его соруководить в 1953/1954 учебном году. Историкам математики будет небесполезно проследить связь между трудами по дескриптивной теории множеств московской школы Лузина и изучением рекурсивно-перечислимых множеств в этом семинаре[xix]. (Если я не ошибаюсь, аналогичные события происходили примерно в то же время и на семинарах П.С. Новикова.) На этом же семинаре Колмогоровым были высказаны основные идеи будущей теории нумераций, впервые развитые в точной форме В.А. Успенским.

Ярко представлен Успенским и один из последних творческих подвигов А.Н. Колмогорова – создание им и  очередным поколением его учеников основ алгоритмической теории информации и теории вероятностей. Эти труды А.Н. Колмогорова ведут непосредственно в сегодняшний день. Соответствующие теории ещё не обрели завершенные формы, продолжается поиск основных концепций, оттачивается интуиция. Драматические начальные шаги этого процесса, протекавшие в 60-е годы, во всей их живой полноте представлены Успенским. Я могу только дополнить его описание несколькими наблюдениями и воспоминаниями, поскольку я тоже был непосредственным свидетелем происходящего.

Мне не довелось быть непосредственным учеником Колмогорова, и мои личные встречи с ним были немногочисленны. Но каждая навсегда врезалась в память. Первая такая встреча произошла в середине 60-х годов, когда я был аспирантом на кафедре математической логики. С.А. Яновская планировала организовать заседание Математического Общества по программным методам обучения с участием ведущих математиков, педагогов и психологов. Написав записку А.Н., она попросила меня отвезти это послание на дачу в Болшево-Комаровке, вблизи Москвы, которую Колмогоров в течение многих лет разделял с П.С. Александровым. Дача эта, конечно же, была знаменита в математических кругах. Дело было зимним холодным вечером, и я нашёл не особенно приметный дом не без труда.

Колмогоров вышел ко мне в лыжном костюме, как всегда, голова его была чуть-чуть наклонена вперёд. Обращение его с любым собеседником, независимо от возраста и ранга, всегда было предельно корректным. Вот и сейчас, увидев меня первый раз, он протянул руку, пригласил сесть и погреться. Прочитав записку, А.Н. сказал, что, к сожалению, не сможет сделать доклад, о чём его просила Яновская, так как не чувствует себя экспертом в данной области. Он рекомендовал обратиться к Б.В. Гнеденко, который, если мне не изменяет память, и сделал требуемый доклад. Из самого заседания математического общества мне запомнился лишь не лишённый комизма эпизод. Один из выступавших, энтузиаст-психолог увлечённо излагал своё необычайное и, несомненно, окончательное решение проблемы обучения детей математике.

– Как, например, учить сложению? – риторически спросил он, – мало кто знает, что такое сложение!  – И, посмотрев в зал, заполненный математиками, добавил

– Вы не знаете, что такое сложение!

И здесь не выдержал А.Г. Курош.

– МЫ знаем, что такое сложение! – возмущённо возразил он.

Вообще подготовка этого заседания оказалась крайне благотворной для меня. Я ближе познакомился с С.А. Яновской, с её учеником философом Б.В. Бирюковым, от которого я впервые услышал о замечательном учёном и замечательной личности академике, адмирале А.И. Берге (много лет спустя Аксель Иванович энергично вмешался, когда моя монография застряла в недрах Редакционно-Издательского Совета Издательства Наука). В те дни мне довелось провести несколько часов в доме матери Б.В. Бирюкова в одном из исчезнувших теперь Таганских переулков. Как жаль, что я тогда же не записал её рассказ, какой трагический, какой подлинный документ о жизни в коммунистическом государстве мог бы получиться! С её недавней кончиной ещё один непосредственный свидетель трагических событий, способный описать их, ушёл навсегда...

вернуться

[13]

Dalen D. van, Troelstra A. S. Constructivity in Mathematics. An Introduction. Vol.1–2, North-Holland, Amsterdam-New York-Oxford-Tokyo, 1988.

вернуться

[16]

Kleene S.C. On the interpretation of intuitionistic number theory. Journal of Symbolic Logic, v.10, 109–124, 1945.

вернуться

[10]

Колмогоров А.Н. Zur Deutung der intuitionistischen Logic. Mathematische Zeitschrift, v. 35, 58–65, 1932.

вернуться

[18]

В связи с подобными проблемами часто приходится слышать о языковом барьере. Боюсь, однако, что дело обстоит сложнее. Во-первых, скажем, Колмогорову не легче читать по-английски, чем любому его англоязычному коллеге по-русски. Во-вторых, статья 32-го года написана по-немецки, а статья 25-го года уже довольно давно (1967 г.) опубликована в английском переводе профессором Хейенортом [17]. В третьих, трудно не вспомнить об аналогичной судьбе выдаюшейся работы П.С. Новикова [18], опубликованной в 1943 году по-английски. И это не помогло - работа эта по сей день остаётся практически неизвестной за пределами (бывшего) Советского Союза. Не мне, однако, искать разгадку описанного феномена.

В связи с публикацией английского перевода статьи 25-го года приведём короткое, но выразительное письмо Колмогорова (копия приводимого письма получена, благодаря любезности Профессора И. Анелиса, из Jean van Heijenoort papers, 1946-1983, Archives of  American Mathematics, University Archives, University of Texas at Austin).

Москва В 234                     Professor John van Heijenoort

Университет                      100 Washington Square

Зона Л. кв. 10                   New York 3 N.Y. USA

А.Н.Колмогоров

Глубокоуважаемый Коллега!

Моя работа, опубликованная в 1925 году, может рассматриваться как общее достояние специалистов по математической логике, и я ничего не имею против ее перевода. Рассчитываю, впрочем, на Вашу любезность в смысле присылки мне экземпляра подготовляемой Вами книги по её выходе в свет.

                 С искренним уважением

12 ноября 1963                         Ваш А. Колмогоров

О невероятной жизни самого ван Хейенорта можно прочесть в яркой книге Аниты Феферман [19].

вернуться

[20]

Mendelson E. Second Thoughts about Church's Thesis and Mathematical Proofs. The Journal of Philosophy, v.87 No.5, 225–233, 1990.

вернуться

[19]

Связь этих двух теорий особенно ясно ощущается в иерархиях множеств в теории рекурсивных функций (иерархия Клини-Мостовского и т.д.).

6
{"b":"315265","o":1}