В заключение обратимся еще к одному, широко распространенному результату, возникшему вместе с образованием нового смысла: к интерпретации самих физиков, которая проистекала из нового осмысления, принимала его в качестве чего-то "само собой разумеющегося" и повсеместно господствует вплоть до наших дней.
Природа в своем "истинном бытии-самом-по-себе" является математической. От этого бытия-самого-по-себе чистая математика пространства-времени переходит к слою законов, обладающих аподиктической очевидностью и безусловной всеобщей значимостью, и от непосредственного познания законов аксиоматизации начал априорных конструкций - к познанию бесконечного многообразия остальных законов. Относительно пространственно-временных форм природы мы обладаем "врожденными способностями" (название возникло позднее), которые дают возможность познать истинное бытие-само-по-себе, как бытие, определенное в своей математической идеальности (до всякого действительного опыта). Имплицитно математическая идеальность врождена нам.
Иначе обстоит дело с конкретной универсальной закономерностью природы, хотя она также является всецело математической. Она дана "а posteriori", благодаря индукции данных эмпирического опыта. Ошибочно противопоставление, с одной стороны, априорной математики пространственно-временных форм и, с другой стороны, индуктивного естествознания , хотя и использующего чистую математику. Столь же ошибочно решительное размежевание чисто математического отношения основания и следствия от реального основания и реального следствия, тем самым, от природной каузальности.
Постепенно все же возрастает неприятное чувство непроясненности взаимоотношений между математикой природы и связанной с ней математикой пространственно-временных форм, между врожденной и неврожденной математикой. Чистая математика по сравнению с абсолютным познанием, на которое, как говорится, нас благословил Бог-Творец, обладает лишь одним изъяном: хотя она всегда характеризуется абсолютной очевидностью, однако она нуждается в процессах систематизации для того, чтобы сделать познаваемым все "существующее" в пространственно-временных формах и тем самым реализовать себя как эксплицитно явленную математику. Наоборот, мы не имеем априорной очевидности конкретно существующей природы: общая математика природы, выходящая за пределы пространственно-временных форм, должна быть создана индуктивно из фактов опыта. Но природа сама по себе полностью нематематизирована и не может мыслиться как единая математическая система. Следовательно, она действительно не может быть выразима в некоей единой математике природы, а именно в той, которую естествознание непрерывно ищет как всеохватывающую систему законов, аксиоматическую по форме, где аксиомы суть гипотезы, а нечто-то реально достижимое. Почему же собственно нет математики природы, почему у нас нет ни одного шанса раскрыть систему аксиом, свойственную природе, как некую подлинную, аподиктически очевидную аксиому? Не потому ли, что у нас отсутствуют врожденные способности?
В смысловой структуре физики и ее методов, структуре отчужденной и технизированной в той или иной мере, предполагается в качестве "совершенно ясного" сомнительное различение между "чистой" (априорной) и "прикладной" математикой, между "математическим существованием" (в смысле чистой математики) и существованием математически оформленных реалий, где математическая структура является реально-качественным компонентом. И все же даже такой выдающийся гений, как Лейбниц, долгое время бился над проблемой, как постичь настоящий смысл и того, и другого существования универсального существования пространственно-временных форм как чисто геометрических форм, и существования универсальной математической природы в ее эмпирически-реальных формах - и понять их подлинное взаимоотношение друг с другом.
То, какую роль сыграла эта непроясненность в постановке Кантом проблематики синтетических суждений априори и в его различении синтетических суждений чистой математики и естествознания, будет раскрыто позднее.
Эта непроясненность позднее усиливается и модифицируется вместе с формированием и постоянным методическим применением чистой, формальной математики. Смешивается "пространство" с "евклидовым многообразием", чисто формально определяемым, действительная аксиома (в традиционном смысле слова), понимаемая как очевидность, присущая геометрическому или чисто логическому мышлению, постигающего безусловную значимость идеальных норм, смешивается с "неподлинными аксиомами" - термин, которым в учении о многообразии обозначают вообще-то не суждения ("предложения"), а формы предложений как составные части дефиниции "многообразия", формально конструируемого в своей внутренней непротиворечивости.
k) Фундаментальное значение проблемы генезиса математического естествознания
Все эти неясности, да и многие другие, ранее нами рассмотренные, являются следствием трансформации изначального жизненного смысла-образования и соответственно изначальных жизненных задач сознания, проистекают из метода и из его специфического смысла, принимаемого и в наше время. Метод, ставший методом постепенного решения задачи, будучи методом искусства (те^уг]), наследует задачу, не сохраняя, однако, ее действительного смысла. Теоретическая задача и все достижения естествознания (и мировой науки вообще), которое овладевает бесконечной тематикой лишь с помощью бесконечности методов, а бесконечность методов может стать господствующей лишь благодаря техническому мышлению, утратившему смысл, и благодаря технической деятельности, могут остаться действительно и изначально осмысленными лишь в том случае, если ученый сформирует в себе способность постоянно ставить вопрос об изначальном смысле всех своих смыслообразо-ваний и методов - об их исторически первоначальном смысле, прежде всего о смысле всего того, что принимается нами без всякой проверки и равным образом всего наследуемого нами последующего смысла.
Но математик, да и ученый-естественник, будучи в лучшем случае высоко одаренным техником метода,- ведь ему он обязан своими открытиями, которые он только и ищет, совершенно не способен нормальным образом достичь такого рода размышлений. В реальной сфере своих исследований и открытий он не постигает того, что все, прря сияющее эти размышления, само нуждается в прояснении, что наивысшим, наиболее важным интересом для философии и для науки является интерес к действительному познанию самого мира, самой природы. Это и было тем, что было утрачено традиционной наукой, ставшей tej(vtj , коль скоро оно определяло ее исток. Отвергалась как "метафизическая" любая попытка руководить этими размышлениями, исходившая от внематемати-ческого и внеестественнонаучного круга исследователей. Специалист, который посвятил свою жизнь этой науке (и это кажется ему ясным), сам лучше всего знает, что он замыслила своей работе и то, как ему действовать. Пробуждающиеся у этих исследователей философские устремления ("философско-математические", "философско-естественнонаучные"), их исторически различные мотивы, которые должны быть еще прояснены, удовлетворялись ими самими, но, конечно, так, что они вообще упустили из виду и совершенно не поднимали вопрос о целостном измерении, в которое эта работа должна быть включена.
I) Методологическая характеристика нашей интерпретации
В заключение необходимо сказать несколько слов о методе, которому мы следовали в этих параграфах при многообразных интерпретациях данных и который служит средством развития нашего общего взгляда. Исторический экскурс необходим для того, чтобы достичь самопонимания, столь необходимого для современной философской ситуации, чтобы прояснить возникновение духа нового времени и вместе с этим - вследствие недостаточно оцененного значения математики и математического естествознания - уяснить происхождение этих наук. Или, говоря иными словами, уяснить первоначальную мотивацию и движение мысли, которые превратили идею природы в концепцию и дали импульс для ее реализации в ходе развития самого естествознания. Впервые эта идея обнаруживается у Галилея как законченная; следовательно, именно с его именем я связываю все способы рассмотрения (определенным образом идеализирующее-упрощающие положение дел), хотя необходим тщательный исторический анализ того, чем мышление Галилея обязано своим "предшественникам". (Это, впрочем, я буду прослеживать в дальнейшем и с самыми благими намерениями исследовать.) Относительно ситуации, в которой он находился и которая должна быть истоком его мотивации и действительно была его, о чем свидетельствуют его собственные высказывания, необходимо быстро достичь определенной констатации и тем самым понять первые шаги в этом процессе смыслополагания, присущего естествознанию. Но уже здесь мы сталкиваемся с искажениями смысла и даже его сокрытием на более поздних этапах. Ведь мы, размышляя об этом,, сами находимся под влиянием их чар (а также, как я смею думать, и мой читатель). Вначале мы, смущенные ими, не имеем никакого понятий о подмене смысла: мы, кто так хорошо знает, что такое математика и естествознание. Кто в наше время не знает этого еще со школы? Но уже первое прояснение изначального смысла естествознания нового времени и методологического смысла новоевропейской мысли делает весьма явной позднейшую подмену смысла. И уже это оказывает влияние, по крайней мере затрудняя анализ мотивации.