Литмир - Электронная Библиотека
ЗВЕЗДНАЯ МАССА

Массу Солнца можно вычислить, наблюдая за любой планетой Солнечной системы и зная расстояние от нее до Солнца и период обращения планеты. Так же мы можем рассчитать массу Земли, зная расстояние от Земли до Луны и период обращения нашего спутника, – для этого необходимо всего лишь применить закон Кеплера в интерпретации Ньютона. При помощи этого же принципа и уже указанного закона Кеплера можно рассчитать звездную массу двойных звезд, и это вычисление является практически единственным непосредственным методом вычисления звездной массы. К счастью, частью двойной системы являются многие звезды, так что к настоящему времени наработана обширная статистическая база звездных масс. Масса звезды тесно связана с ее светимостью, или световым потоком, излучаемым в секунду времени. Соотношение массы и светимости имеет следующий вид:

L аМх ,

где L – светимость, М – масса, х – показатель степени, равный примерно 3 или чуть больше для звезд с очень большой массой.

Подобное соотношение справедливо не только для звезд, относящихся к звездам главной последовательности, которые состоят из идеального газа, 4Н -› Не.

Двойные звезды могут быть визуальными, спектральными и фотометрическими. В случае визуально-двойных звезд при длительном изучении, например в течение нескольких лет, можно наблюдать, как обе звезды вращаются вокруг общего центра масс, двигаясь при этом по эллиптической орбите. Спектрально-двойные и фотометрические двойные звезды обычно расположены настолько близко, что расчеты крайне затруднительны, так как мы можем наблюдать лишь одну звезду, хотя мы и знаем, что на самом деле их две. В этом случае периоды обращения, как правило, гораздо меньше, и их определение не требует много времени.

Спектрально-двойные звезды можно обнаружить с помощью спектральных наблюдений в течение нескольких ночей. Излучение одного компонента такой звездной системы с определенной периодичностью смещается то в красную, то в синюю часть спектра в зависимости от того, удаляется или приближается звезда. Если спектр второго компонента демонстрирует аналогичные смещения, но в противофазе, то можно утверждать, что перед нами двойная система. Подобное поведение вызвано эффектом Доплера и движением звезды по орбите и позволяет довольно точно определить период ее обращения.

В случае фотометрических двойных звезд мы наблюдаем изменение кривой силы света, то есть отношения светового потока ко времени, из-за того, что звезды затмевают друг друга. Для наблюдения этого явления необходимо, чтобы плоскость орбиты находилась на линии видимости.

Информация, получаемая в ходе наблюдений за двойными системами, меняется в зависимости от типа наблюдения. Расчеты могут быть более или менее сложными, однако принцип остается неизменным. Не будем вдаваться в подробности формул определения массы и обратимся непосредственно к результатам. В случае визуально-двойных звезд мы наблюдаем эллипс обеих и можем рассчитать их массу:

Кеплер. Движение планет. Танцы со звездами. - pic_50.jpg
Кеплер. Движение планет. Танцы со звездами. - pic_51.jpg

где А1 – большая полуось звезды 1, А2 – большая полуось звезды 2, М1 и М2 – их массы, А = А1 + А2 – расстояние между звездами, τ – период обращения. Эти уравнения выводятся непосредственно из закона Кеплера. Таким образом:

Кеплер. Движение планет. Танцы со звездами. - pic_52.jpg

так как центр тяготения должен находиться ближе к более массивной звезде. Если 2 является планетой, М2 << M1 таким образом, число А1 ничтожно мало. Это означает, что А приблизительно равно A2 , и мы получаем закон Кеплера:

Кеплер. Движение планет. Танцы со звездами. - pic_53.jpg

Это крайне важно для ситуаций, когда мы не видим звезды с большей массой, например в случае с черной дырой. Именно с помощью этого метода была вычислена масса черной дыры, находящейся в центре Млечного Пути.

В случае спектрально-двойных звезд можно рассчитать только массы, помноженные на наклон орбиты i, или угол между плоскостью орбиты и лучом зрения.

Если двойные звезды одновременно и спектральны, и фотометричны, могут быть получены особенно обширные данные. Возможно вычислить наклон орбиты, обе массы, а также расстояние между звездами и их радиусы.

Центр Солнца движется относительно центра тяжести Солнечной системы – барицентра. Это движение определяется двумя наиболее массивными планетами – Юпитером и Сатурном – и имеет вид почти круговых движений, согласованных с периодами обращения этих планет (около 12 и 29,5 года). Солнце удаляется от центра масс Солнечной системы на величину, приблизительно равную диаметру Солнца, и вращение происходит вокруг оси, которая, как кажется, расположена на поверхности планеты. Наблюдая за этим движением, можно сделать вывод о существовании Юпитера, хоть он и невидим.

Этот факт очень полезен при обнаружении планет, не относящихся к Солнечной системе. Боковое смещение не несет особой информационной нагрузки, так как его непросто оценить, а вот движение по эллипсу может быть прослежено с помощью эффекта Доплера. Благодаря этим методам исследования были обнаружены многочисленные планетные системы, находящиеся за пределами Солнечной.

ТЕМНАЯ МАТЕРИЯ ВСЕЛЕННОЙ

Хорошо известные нам протоны и нейтроны принадлежат к семейству частиц, называемых барионами. На современном этапе развития науки ученые полагают, что во Вселенной существуют и другие, более экзотичные компоненты, например небарионная темная материя и темная энергия. На долю барионной материи приходится всего 4 % Вселенной, на темную материю – 21 %, а темная энергия составляет – 75 %. Таким образом, материя, которую мы видим невооруженным глазом или с помощью телескопов, – малая часть того, что на самом деле наполняет Вселенную. Именно на такую мысль наводит серия наблюдений, например анизотропии космического микроволнового фона, ускорения Вселенной, кривой вращения спиральных галактик и др.

Как это связано с законами Кеплера? Темная материя изначально была обнаружена среди галактик, но одно из признанных доказательств ее существования – это вращение спиральных галактик, которое происходит слишком быстро. Если бы их тяготение было создано звездной массой и газом, оно не могло бы удерживать материю, которая движется с такой скоростью, на периферии, то есть большая центробежная сила не может быть уравновешена гравитацией, которую создает видимая материя.

Предположим, что автогравитация компенсируется центробежной силой:

Кеплер. Движение планет. Танцы со звездами. - pic_54.jpg

Эта формула подводит нас к третьему закону Кеплера. Мы не можем применить ее сейчас, потому что используем выражение силы тяготения, действующее для точечной центральной массы, например для Солнца, которое представляет собой практически точку в сравнении с размерами Солнечной системы. В пределах галактики материя распределена более равномерно.

Однако, анализируя ее периферию, можно считать, что вся масса сосредоточена в центральной точке. То есть предыдущая формула действительна на периферии и только на ней. Согласно ей:

Кеплер. Движение планет. Танцы со звездами. - pic_55.jpg

Описываемая этой формулой кривая вращения называется кривой вращения Кеплера.

Однако мы наблюдаем простое вращение, то есть на периферии скорость вращения не зависит от расстояния (см. рисунок на следующей странице). Но это означает, что галактики не повинуются третьему закону Кеплера. Вопрос о том, как это возможно, является одним из самых больших вопросов современной космологии. Если бы движение на периферии спиральных галактик подчинялось предыдущей формуле, согласно которой:

24
{"b":"282353","o":1}