Литмир - Электронная Библиотека
A
A

Случайные игры следует отличать от игр, где имеет значение класс игры. Принципы рулетки, игры в кости, игрового автомата идентичны, но они только частично объясняют, что происходит при игре в покер, триктрак или на ипподроме. В некоторых играх результат зависит только от случая; в других на него влияет класс игрока. Шансы – вероятность выигрыша – это всё, что вам нужно знать для участия в случайной игре, но этой информации недостаточно, чтобы предугадать, кто выиграет и кто проиграет, если исход игры зависит не только от везения, но и от класса игры. Встречаются гениальные профессиональные картежники и знатоки ипподрома, но никто не делает прибыльной профессии из игры в кости.

Многие считают, что биржа мало чем отличается от казино. Является ли выигрыш на бирже результатом сочетания умения с удачей, или это просто везение? Мы еще вернемся к этому вопросу в главе 12.

Полосы невезения, как и полосы везения, встречаются в случайных играх, как, впрочем, и в жизни, довольно часто. Игроки реагируют на них на удивление асимметрично: они апеллируют к закону о среднем в надежде на скорое прекращение полосы невезения и вновь апеллируют к нему же, когда хотят, Чтобы полоса везения длилась и длилась. Закон о среднем остается глух к их упованиям. При игре в кости результат предшествующей серии бросков не дает абсолютно никакой информации о том, что принесет следующий бросок. Карты, монеты, кости и рулетка не имеют памяти.

Игроки могут считать, что они ставят на красное или на семерку, но на деле они ставят на хронометр. Проигрывающий, торопя поворот в игре, склонен короткую серию неудач воспринимать как длинную. Выигрывающий, надеясь отдалить перемену фортуны, предпочитает длинную серию считать короткой. Далекие от игровых столов менеджеры страховых компаний часто рассуждают так же. Они устанавливают размеры страховых взносов так, чтобы покрыть свои убытки в длительной перспективе; но если одновременно случатся землетрясения, пожары и ураганы, возможна очень болезненная короткая полоса. В отличие от игроков страховые компании управляют капиталом и выделяют резервы на случай полосы неудач.

Время является важнейшим фактором в игре. Риск и время – разные стороны одной медали, потому что, если бы не было завтра, не было бы и риска. Время преобразует риск, и природа риска скрывается за его горизонтом: будущее – это стол для игры.

Роль времени возрастает, если решения необратимы. Тем не менее такие решения часто приходится принимать на основе несовершенной информации. Необратимость постоянно довлеет над многими решениями: ехать на метро или на такси, строить ли автомобильную фабрику в Бразилии, переходить ли на другую работу, объявлять ли войну.

Покупая сегодня акции, мы всегда можем продать их завтра. Но что нам делать после возгласа крупье «Ставки сделаны, господа!»? Что делать, когда партнер по покеру удваивает ставку? Здесь нет пути назад. Не следовало ли воздержаться от игры в надежде, что через некоторое время удача повернется к нам лицом и кости лягут в нашу пользу?

Гамлет осуждал колебания перед лицом неизвестности, потому что «…решимости природный цвет / Хиреет под налетом мысли бледным, / И начинанья, взнесшиеся мощно, / Сворачивая в сторону свой ход, / Теряют имя действия»[6]. Однако, решившись действовать, мы теряем право переждать до поступления новой информации. В этом смысле бездействие имеет свою цену. Чем больше степень неопределенности исхода, тем ценнее может оказаться возможность отложить действие на потом. Гамлет не прав: колеблющийся находится на полпути к цели.

Описывая устроение мирового порядка, греческая мифология использует гигантскую игру в кости для объяснения того, что современные ученые называют Большим взрывом. Три брата разыграли мироздание в кости: Зевс выиграл небеса, Посейдон – море, а проигравший Аид спустился в ад, став хозяином подземного царства.

Теория вероятностей кажется созданной специально для греков, для их склонности к игре, математических способностей, логического мышления и страсти к доказательствам. Однако, будучи самым цивилизованным из всех древних народов, они тем не менее не проникли в ее пленительные пределы. Это удивительно, потому что к тому времени это была единственная цивилизация, относительно свободная от доминирования жречества, монополизировавшего связь с тайными силами. Цивилизация, как нам кажется, смогла бы развиваться гораздо быстрее, если бы греки предугадали то, что их интеллектуальным наследникам – людям Ренессанса – удалось открыть через две тысячи лет.

Однако склонные к теоретическому осмыслению мира греки мало интересовались применением теории к какой бы то ни было технологии, которая могла бы изменить их представления о возможности воздействовать на будущее. Когда Архимед изобрел рычаг, он объявил, что может сдвинуть Землю, если найдется соответствующая точка опоры, но это его, по-видимому, не очень занимало. Повседневная жизнь греков, их отношение к ней оставались в основном теми же, что и у их предков, живших за тысячи лет до них. Они охотились, ловили рыбу, сеяли хлеб, рожали детей и использовали технику строительства, копирующую достижения тех, кто строил в междуречье Тигра и Евфрата и на берегах Нила.

Поклонение ветрам было единственной формой управления риском, которая привлекала их внимание: поэты и драматурги постоянно воспевали зависимость от ветров и любимые дети приносились в жертву для их умиротворения. Но самое главное, грекам недоставало системы счисления, которая позволила бы им считать, вместо того чтобы просто фиксировать результаты своей деятельности9.

Я не собираюсь утверждать, что греки не размышляли о природе вероятности. Древнегреческое слово ειxóς (eikos), которое означает 'правдоподобный' или 'вероятный', имеет тот же смысл, что и современное понятие вероятности: «ожидаемое с некоторой степенью определенности». Сократ определял ειxóς как 'правдоподобие'[7]10.

Определение Сократа выявляет весьма серьезную тонкость. Правдоподобие – не то же самое, что истина. Для греков истина – это то, что можно доказать с помощью логики и аксиом. Их настойчивое требование доказательств противопоставляет истину эмпирике эксперимента. Например, в «Федоне» Симмиас обращает внимание Сократа на то, что «предположение, будто душа пребывает в гармонии, вообще ничем не подтверждено, а остается только вероятным». Аристотель выражает недовольство философами, которые «…говорят хоть и правдоподобно… не говорят, что есть истина». В другом месте Сократ предваряет Аристотеля, когда декларирует, что «математик, который исходит из вероятности в геометрии, не заслуживает внимания»11. Еще пару тысяч лет после этого раздумья об играх и игра оставались разными видами деятельности.

Самуил Самбурски (Sambursky), выдающийся израильский историк и философ-науковед, приводит единственный убедительный тезис, который, на мой вкус, объясняет, почему греки не сделали стратегический шаг для развития количественного подхода к вероятности12. Проводя четкое разграничение между истиной и вероятностью, замечает Самбурски в статье, написанной в 1956 году, греки и не могли усмотреть никакой основательной структуры или гармонии в беспорядочной природе повседневного существования. Хотя Аристотель утверждал, что люди должны принимать решения на основе «желаний и рассуждений, направленных к какой-либо цели», он не дал рецептов определения вероятности успешного исхода. Греческие трагедии рассказывают историю за историей о беспомощности человека в тисках безликого рока. Когда греки хотели узнать, что может принести им завтрашний день, они обращались не к своим мудрым философам, а к оракулам.

Греки верили, что упорядоченность можно найти только на небесах, где планеты и звезды с неподражаемой регулярностью появляются в установленных местах. К этой предустановленной гармонии они относились с большим почтением, и их математики интенсивно ее изучали. Но совершенство небес только подчеркивало несовершенство земного существования. Более того, предсказуемость небесной тверди резко контрастировала и с поведением пребывающих там непостоянных и глупых богов.

вернуться

6

Перевод М. Лозинского. – Примеч. переводчика.

вернуться

7

Точнее было бы сказать «истиноподобие». – Примеч. науч. редактора.

6
{"b":"277663","o":1}