Игре посвящен трактат Кардано «Liber de Ludo Aleae» («Книга о случайных играх»). Слово aleae имеет отношение к игре в кости. Aleatorius происходит от того же корня и относится к случайным играм вообще. Эти слова дошли до нас в слове «aleatory», обозначающем события с неопределенным исходом. Так элегантная латынь невольно объединила для нас понятия игры и неопределенности.
В «Liber de Ludo Aleae» были предприняты первые серьезные попытки разработать статистические принципы теории вероятностей. Но само слово «вероятность» в тексте не встречается. В названии, которое Кардано дал своей книге, и большей части текста используется слово «шансы». Латинские корни слова probability[17] представлены комбинацией probare, что означает 'испытывать, пробовать' или 'проявлять себя', и ilis, что означает 'способность быть'; именно в этом смысле могло бы оказаться на поверку верным или стоящим рассмотрения предположение, что Кардано мог знать это слово. Понимание связи между вероятностью и случайностью, составляющей суть случайных игр, еще около ста лет после опубликования «Liber de Ludo Aleae» не смогло стать достоянием обыденного мышления.
По утверждению канадского философа Яна Хакинга (Hacking), латинские корни слова «вероятность» означают нечто вроде 'заслуживающее проверки'10. Это значение слова сохранялось долгое время. В качестве примера Хакинг приводит отрывок из романа Даниэля Дефо «Роксана, или Удачливая любовница», датированного 1724 годом. Леди, убедившая состоятельного мужчину заботиться о ней, именно в этом смысле употребляет слово probable, когда говорит: «Я тогда впервые увидела, что значит вести комфортабельную жизнь, и это стоило испытать (it was a very probable way)». Это значит, что она создала себе образ жизни, соответствующий благосостоянию ее покровителей; как сказал Хакинг, она «сумела выбраться из той грязи, в которой начинала»11.
Хакинг приводит и другой пример толкования этого слова12. Галилео назвал теорию Коперника о вращении Земли вокруг Солнца improbable (неправдоподобной, невероятной), потому что она противоречит тому, что люди могут видеть собственными глазами, – Солнце ходит вокруг Земли. Теория была неправдоподобной, потому что не находила подтверждения. Менее столетия спустя, используя новое (но все же не новейшее) значение слова, немецкий философ Лейбниц охарактеризовал гипотезу Коперника как «несравненно более вероятную». Для Лейбница, пишет Хакинг, «вероятность определяется через очевидность и разум»13. На самом деле в немецком слове wahrscheinlich[18] хорошо отображается смысл понятия: оно переводится как «кажущееся правдой, правдоподобное».
Вероятность всегда несет в себе двоякий смысл: с одной стороны, это взгляд в будущее, с другой – истолкование прошлого; с одной стороны, речь идет о наших предположениях, с другой – о том, что мы действительно знаем. Эта двуединость понятия пронизывает все, о чем пойдет речь в этой книге.
В первом смысле вероятность означает степень правдоподобия или приемлемости мнения – хороший взгляд на вероятность. Ученые обозначают такое понимание термином «эпистемологический», т. е. не поддающийся до конца анализу и пониманию, находящийся на границе познаваемого и непознаваемого.
Понимание этого первого аспекта возникло значительно раньше, чем идея об измерении вероятности. Старое понимание развилось с течением времени из идеи проверки: насколько можно принимать на веру то, что мы знаем? В случае Галилео вероятность была оценкой того, насколько можно верить тому, о чем нам сказали. Использование этого понятия у Лейбница ближе к современному: насколько можно доверять собственному восприятию.
Этот более современный подход не мог получить развития, пока математики не разработали теоретическую концепцию частоты событий в прошлом. Кардано мог первым наметить статистический подход к теории вероятностей, но характерное для его времени и психологии игрока отношение к жизни обусловило интерес только к субъективно-волевому аспекту вероятностей, и такое понимание не стыковалось с тем, что он пытался осуществить на пути измерения.
Кардано осознавал, что он стоит перед чем-то значительным. В автобиографии он, оценивая «Liber de Ludo Aleae» как одно из своих главных достижений, отметил, что «открыл разум для тысячи поразительных фактов». Заметьте слова «разум для». Упоминаемые в книге факты о частоте исходов были известны каждому игроку, но не было теории, объясняющей эти частоты. Кардано высказывает характерную для теоретика жалобу: «…эти факты много дают для понимания, но вряд ли что-либо для самой игры».
В автобиографии Кардано сообщает, что написал «Liber de Ludo Aleae» в 1525 году, будучи еще молодым человеком, и переписал заново в 1565-м. При экстраординарной оригинальности книга чрезвычайно беспорядочна. Она собрана из бесчисленных черновых набросков и решений проблем, которые появляются в одном месте, перемежаются с решениями, базирующимися на существенно отличных методах, описанных в другом месте. Отсутствие какой-либо системы в использовании математических символов страшно затрудняет понимание текста. Работа не публиковалась при жизни Кардано. Она была найдена среди рукописей после его смерти и впервые опубликована в Базеле только в 1663 году. К этому времени в теории вероятностей был достигнут значительный прогресс силами других ученых, которые не были знакомы с направленными к той же цели усилиями Кардано.
Если бы эта работа не пролежала целое столетие в безвестности, содержащиеся в ней обобщения, касающиеся вероятностей в играх, могли бы значительно ускорить развитие математики и теории вероятностей. Здесь впервые сформулировано общепринятое теперь представление вероятности через отношение числа благоприятных исходов к «совокупности» (circuit), то есть к общему числу возможных исходов. Например, когда мы говорим, что шансы выбрасывания орла или решки составляют 50/50, это значит, что орел выпадает в одном из двух равновозможных случаев. Вероятность достать даму из колоды карт составляет 1/13, поскольку в колоде из 52 карт имеется четыре дамы; вероятность же достать даму пик равна 1/52, поскольку в колоде только одна дама пик.
Последуем за Кардано в его рассмотрении вероятностей различных результатов бросков при игре в кости[19]. В главе 15 его «Liber de Ludo Aleae», в параграфе, озаглавленном «О выбрасывании одной кости», он проясняет некоторые общие принципы, ранее никем не рассматривавшиеся:
Частоты появления значений, относящихся к каждой из двух половин числа граней, одинаковы; отсюда шансы, что данное значение выпадет в трех бросках из шести, равны шансам, что одно из трех заданных значений выпадет в одном броске. Например, я могу легко выбросить один, три или пять, так же как два, четыре или шесть. Ставки должны соответствовать этому равенству, если игра ведется честно14.
Далее Кардано продолжает вычислять вероятность того, что в одном броске выпадет одно из двух чисел, скажем 1 или 2. Ответ: один шанс из трех, или 33 %, поскольку речь идет о двух исходах из шести возможных. Он также подсчитывает вероятность повторения благоприятных исходов при бросании одной кости. Вероятность того, что в двух бросках подряд выпадет 1 или 2, равна 1/9, то есть квадрату одного шанса из трех, или 1/3, умноженной сама на себя. Вероятность того, что в трех бросках подряд выпадет 1 или 2, равна 1/27, или 1/3 × 1/3 × 1/3, а вероятность выбросить 1 или 2 в четырех бросках подряд равна 1/3 в четвертой степени.
Кардано продолжает определять вероятность выбросить 1 или 2 с двумя костями вместо одной. Если шансы, что в одном броске выпадет 1 или 2, оцениваются как один к трем, интуиция подсказывает, что при бросании двух костей они удвоятся и достигнут 67 %. Правильным ответом будет соотношение пять к девяти, или 55,6 %. Действительно, при выбрасывании двух костей есть один шанс из девяти, что 1 или 2 выпадут сразу на двух костях в одном броске, но вероятность того, что на каждой кости выпадет 1 или 2, уже подсчитана ранее; значит, мы должны вычесть 1/9 из 67 %, предсказанных нами на основе интуиции. Отсюда 1/3 + 1/3 – 1/9 = 5/9.