Литмир - Электронная Библиотека
Содержание  
A
A

Н. — Ну, что же, в начале заряда через него пройдет максимальный ток, который обусловит большое падение напряжения UR. Затем по мере заряда величина тока, а следовательно, и величина напряжения UR уменьшатся опять же по экспоненциальной кривой.

Л. — А ты не подумал о том, что сумма напряжений UR и Uс должна быть в любой момент равна общему напряжению U?

Н. — Признаюсь, что эта элементарная истина ускользнула от меня. Очевидно, если ее учесть, то можно построить кривую UR по кривой Uс и наоборот, раз сумма их дает горизонтальную площадку.

Л. — Я начертил кривые напряжений для постоянной времени RC, более высокой по сравнению с длительностью Т прямоугольного импульса, а также для малого значения RC.

В первом случае я принял, что заряд практически заканчивается в конце интервала времени Т. Во втором случае он заканчивается очень быстро, так что за всплеском напряжений Uс и UR следуют горизонтальные участки. Теперь перейдем ко второму акту драмы: приложенное напряжение U вновь падает до нуля.

Н. — В этот момент конденсатор С начинает разряжаться через резистор R и источник напряжения. Вследствие этого напряжение Uс начинает уменьшаться, также по экспоненте и с той же постоянной времени. Когда постоянная времени достаточно велика, мы опять встречаемся с нашим старым добрым знакомым — зубом пилы, одним из тех зубьев, которыми мы были сыты по горло за время изучения развертывающих устройств.

Телевидение?.. Это очень просто! - _418.jpg

Л. — Наш зуб пилы отличается от других тем, что заряд и разряд происходят в соответствии с одним и тем же законом, тогда как в развертывающих устройствах разряд происходит значительно скорее, поскольку цепь разряда имеет очень небольшое сопротивление и поэтому небольшую постоянную времени… Но, однако, вернемся к нашим напряжениям. Что произойдет с UR на резисторе?

Н. — Поразительные явления! Когда конденсатор начнет разряжаться, ток через резистор R изменит направление. Появится, следовательно, отрицательное падение напряжения. Ток и, следовательно, напряжение, значительные в начале разряда, затем уменьшаются по экспоненциальному закону, который решительно оказывается высшим законом в телевидении.

Телевидение?.. Это очень просто! - _419.jpg

Л. — Не удивляйся так изменению направления напряжения на резисторе R. При наличии некоторой логики ты мог бы и предвидеть это. Ведь UR + Uc = U. Если U упало до нуля, то для сохранения этого равенства нужно, чтобы UR стало отрицательным, если Uc положительно, в противном случае сумма их не может быть равна нулю…

Н. — Это ясно. Но у меня в противоположность тебе нет «математической шишки» и физические рассуждения для меня гораздо более убедительны. Твои научные термины…

Л. — Пусть они тебя не пугают. Говорят, что напряжение U интегрируется, когда снимается напряжение Uc с конденсатора. Его форма изменяется в том смысле, что все округляется. Внезапные изменения смягчаются. Наоборот, все эти изменения резче выражены в дифференцированном напряжении UR, которое снимают с резистора.

Н. — В общем конденсатор — это незлобивый толстяк, во всем видящий хорошее. Напротив, резистор — это сварливая карга с резкими движениями, с приступами громоподобного гнева…

Телевидение?.. Это очень просто! - _420.jpg
ДИФФЕРЕНЦИРУЮЩИЕ И ИНТЕГРИРУЮЩИЕ ЦЕПИ В ДЕЙСТВИИ

Л. — Твои дикие сравнения меня огорчают… Запомни из того, что мы говорили, следующее: одна и та же цепь может служить и дифференцирующей и интегрирующей в зависимости от того, откуда снимают напряжение — с резистора или конденсатора. Однако в дифференцирующей цепи R и С должны быть сравнительно небольшой величины, их произведение, т. е. постоянная времени, не должно превышать приблизительно пятой части продолжительности импульса Т. Наоборот, R и С интегрирующей цепи должны быть большими, так чтобы постоянная времени была в несколько раз больше Т.

Н. — Следовательно, если я правильно понял, практически используются разные цепи для дифференцирования и интегрирования. И все же, должен признаться, я не совсем ясно себе представляю, как их используют.

Л. — А ведь ты уже достаточно знаешь, чтобы понять это. Начерти форму синхронизирующих сигналов на выходе амплитудного селектора.

Н. — Вот они стоят стройными рядами (рис. 113). Я изобразил два строчных импульса, затем более длинные кадровые импульсы, затем опять импульсы строк[7].

Телевидение?.. Это очень просто! - _421.jpg

Рис. 113. Разделение синхронизирующих сигналов с помощью схемы на рис. 114.

Телевидение?.. Это очень просто! - _422.jpg

Л. — Я в свою очередь дополню твой рисунок, отметив стрелками моменты начала развертки строк. Напомню мимоходом, что синхронизация строчной развертки поддерживается и во время подачи кадровых синхроимпульсов. Сумеешь ты теперь начертить форму дифференцированного напряжения?

Н. — В соответствии с тем, что ты только что говорил, я полагаю, что постоянная времени очень мала, менее пятой части длительности импульсов… чего?

Л. — Самых коротких импульсов, строчных.

Н. — Дифференцированные сигналы имеют вид коротких и острых импульсов, положительных или отрицательных сообразно с тем, идет ли речь о начале или конце импульсов.

Л. — Эти сигналы, острые, как лезвие бритвы, весьма пригодны для точной синхронизации строчной развертки. В более простых телевизорах они непосредственно используются для синхронизации блокинг-генератора или мультивибратора, о которых мы уже говорили. В телевизорах подороже эти импульсы управляют схемой автоматической подстройки строчной частоты, отличающейся повышенной помехоустойчивостью, особенно необходимой в условиях дальнего приема при слабом входном сигнале.

А теперь попробуй начертить форму сигналов на выходе интегрирующей цепи.

Н. — Я думаю, что ее постоянная времени должна превышать длительность кадрового импульса. В этих условиях строчной импульс многого не сделает. Действительно, едва начнется заряд конденсатора, как нужно, чтобы начался разряд. Бедняжка толстяк не успеет достигнуть сколько-нибудь значительного напряжения, как оно уже начнет падать.

Л. — Тем лучше, Незнайкин! То, что импульсы строк почти не появляются на выходе интегрирующей цепи, великолепно, так как эта цепь поможет нам выделить кадровые импульсы.

Посмотри-ка, как она реагирует на эти импульсы.

Н. — Так как их продолжительность больше, у конденсатора будет время зарядиться в какой-то мере. Но в конце первого импульса и во время, отделяющего его от следующего импульса, он немного разрядится. Затем, во время второго импульса его напряженно еще повысится. Последует короткий разряд, затем новый заряд и т. д. Все это похоже на тот танец, где делают три шага вперед, затем шаг назад, потом опять три шага вперед и т. д.

вернуться

7

Уравнивающие импульсы двойной строчной частоты, играющие чисто вспомогательную роль, во избежание усложнения чертежа здесь опущены. Прим. ред.

50
{"b":"274502","o":1}