Широкое применение в технике находят так называемые катодные лучи, которые представляют собой поток электронов, вырывающихся с поверхности металлического катода в вакуум («электронная эмиссия»). Как показала практика, одним из лучших материалов для катодов оказался вольфрам.
Вольфрам не только самый тугоплавкий металл. В чистом виде он обладает и колоссальной прочностью: его сопротивление разрыву достигает 40 тонн на квадратный сантиметр, значительно превышая прочность лучшей стали. И такие характеристики металл «ухитряется» сохранять даже при 800°С!
Высокая прочность металлического вольфрама сочетается с хорошей пластичностью: из него можно вытянуть тончайшую проволоку, 100 километров которой весят всего 250 граммов!
Вольфрамовая проволока, широко применяющаяся в электролампах, обрела недавно еще одну «профессию»: ее предложено использовать в качестве режущего инструмента для обработки хрупких материалов. Ультразвуковой генератор при помощи преобразователя придает вольфрамовой нити колебательные движения, и она медленно, но верно врезается в обрабатываемый материал. Новый «резак» легко справляется с такими материалами, как кварц, рубин, ситалл, стекло, керамика, разрезая их с ювелирной точностью на части или оставляя в них пазы и щели любой формы, любых размеров.
Но как ни велика прочность вольфрамовой проволоки, она не идет ни в какое сравнение с прочностью «усов» из этого металла - тончайших кристалликов, которые в сотни раз тоньше человеческого волоса. Советские физики сумели получить вольфрамовые «усы» диаметром всего две миллионные доли сантиметра. Их прочность 230 тонн на квадратный сантиметр - это почти равно абсолютному потолку прочности, т. е. теоретическому пределу, предсказанному наукой для земных веществ. Но такой чудо-металл существует пока только в стенах лабораторий.
Используемый же в технике чистый вольфрам получают восстановлением его трехокиси водородом. Образующиеся при этом мельчайшие вольфрамовые пылинки прессуют и спекают, нагревая электрическим током до 3000°С. Из этого вольфрама вытягивают нити накаливания электроламп, штампуют детали радиоламп и рентгеновских трубок, изготовляют контакты для рубильников, электродов, выключателей.
Учеными разработан плазменно-дуговой метод выращивания крупных монокристаллов вольфрама, молибдена и других тугоплавких металлов. В Институте металлургии Академии наук СССР этим методом был получен монокристалл вольфрама весом 10 килограммов. Благодаря высокой чистоте такой металл отличается необычными механическими свойствами: при очень низких температурах он сохраняет пластичность, а при значительном нагреве почти не теряет своей прочности. Монокристаллы находят применение во многих электровакуумных приборах.
Интересный эксперимент, в котором деятельное участие принимал вольфрам, был проведен во время совместного полета советских и американских космонавтов по программе «Союз»-«Апполон». Дело в том, что в земных условиях трудно, а зачастую и невозможно получить сплав металлов, значительно различающихся по плотности: в процессе плавки и кристаллизации частицы более тяжелого компонента будут стремиться в нижние слои слитка, а в верхних «поселятся» частицы более легкого металла. Естественно, что пользоваться сплавом с таким «разношерстным» составом практически нельзя. Иное дело - космическая плавка. Здесь, в условиях невесомости, все равны - и легкие, и тяжелые, поэтому сплав обещает быть равномерным и по составу, и по структуре. Вот и решено было в так называемой «универсальной печи» выплавить сплав легковесного и легкоплавкого алюминия с солидным тяжеловесом - вольфрамом, обладающим к тому же рекордной тугоплавкостью.
Этот эксперимент - только начало освоения космической технологии. «Пройдет немного времени, - говорит один из участников исторического полета Валерий Кубасов, - ив космосе совместными силами мы сможем создать целые заводы. Они займутся совершенно новой металлургией - получением сплавов и материалов, которые невозможно получить в условиях Земли».
Еще в 1929 году в США был сделан любопытный подсчет той экономии, которая получена благодаря внедрению вольфрама в технику. Выяснилось, что появление вольфрамовой нити накаливания в электрических лампочках позволило сэкономить электроэнергии на сумму 400 миллионов рублей. Производство одного автомобиля с помощью инструмента из вольфрамовой стали оказалось на 40 рублей дешевле, чем при использовании для этой цели углеродистой стали. Общие сбережения в машиностроении, «виновником» которых был вольфрам, уже тогда оценивались в 500 - 600 миллионов рублей в год.
...Много веков металлы верно служат человеку, помогая ему создавать изумительный мир техники. И одно из почетных мест среди них по праву принадлежит вольфраму - металлу, стоящему на огненных рубежах.
I
Xe
Re
Os
Ir
Pt
At
Rn
ЗА ТРЕМЯ ЗАМКАМИ
Находка конкистадоров. - Указ испанского короля. - Близкие родственники. - Первый в России. - «Алмазная» сталь. Позвольте усомниться! - Оплошность министра финансов. - На добрую память. - Клад в отходах. - Лауреат Демидовскои премии. - «В грамм добыча». - Радушный прием. - Искры гаснут на ветру? - Сквозь сетку. - Как утолить «голод»? - В грозный год. - Прозрачные зеркала. - Дар Моптесумы. - Измерьте температуру. - Три ключа. - Равнение на платину. - «Для всех времен, для всех народов». - Оранжевые лучи. - Платина ставит диагноз. - Не чувствуя боли. - Высокая честь.
В XVI и XVII веках испанские конкистадоры бесцеремонно расхищали богатства древних государств ацтеков и инков. Тонны золота, серебра, изумрудов заполняли трюмы галеонов, которые постоянно курсировали между Испанией и Южной Америкой. Однажды отряд завоевателей, передвигаясь вдоль реки Платино-дель-Пинто (Колумбия), обнаружил на берегах ее золото и крупицы неизвестного им тяжелого серебристого металла. Из-за исключительной тугоплавкости он оказался ни на что не пригодным и лишь затруднял очистку золота. Новый металл испанцы решили назвать платиной, что означает «серебрецо» («серебришко», «плохое серебро»), выразив тем самым свое недоброе к нему отношение.
Все же довольно большие количества платины были вывезены в Испанию, где ее продавали по цене, значительно более низкой, чем серебро. Вскоре испанские ювелиры обнаружили, что платина хорошо сплавляется с золотом, и те из них, кто был не чист на руку, стали примешивать ее к золоту при изготовлении ювелирных изделий и, главным образом, фальшивых монет. Об этой «проделке» ювелиров стало известно правительству, и король не нашел ничего лучшего, как издать приказ, требующий прекратить ввоз в Испанию никчемного металла, а заодно и уничтожить все его запасы, чтобы мошенники-ювелиры не могли больше морочить голову честным людям. Вся имевшаяся в стране платина была собрана и при свидетелях брошена в море. Этим печальным эпизодом завершился первый этап в биографии платины.
Прошло немало лет, прежде чем снова заговорили об этом металле. Сначала им заинтересовались ученые. Большой вклад в изучение платины внес в конце XVIII века замечательный русский химик вице-президент Горной коллегии в Петербурге Аполос Аполосович Мусин-Пушкин, почетный член многих иностранных академий наук.
Исследование платины привело к открытию нескольких металлов, сопутствующих ей в природе и получивших общее название платиновых: в 1803 году были открыты палладий и родий, в 1804 году - осмий и иридий, а спустя сорок лет химикам стал известен и последний элемент этой группы - рутений. Как потом выяснилось, он оказался самым редким из платиновых металлов, и поэтому его появление на свет было несколько запоздалым.
Работам в этой области в немалой степени способствовал тот-факт, что в 1819 году на Урале вблизи Екатеринбурга (ныне Свердловск) геологи обнаружили довольно солидные россыпные месторождения платины. Спустя пять лет на берегу небольшой уральской реки Баранчи начал действовать первый в России платиновый рудник.