Литмир - Электронная Библиотека
A
A

В барнетовском описании пифагорейской этики интересно отметить противоположность ее современным оценкам. Например, на футбольном матче люди, мыслящие по-современному, считают, что игроки гораздо важнее простых зрителей. Эти люди подобным же образом относятся и к государству: они больше восхищаются такими политиками, которые являются конкурентами в политической игре, нежели теми людьми, которые являются только зрителями. Эта переоценка ценностей связана с изменением социальной системы: воин, благородный, плутократ и диктатор – каждый имеет свои собственные нормы добра и истины. В философской теории тип благородного сохранялся довольно долго, потому что этот тип был связан с греческим гением, потому что добродетель созерцательности получила теологическое одобрение, потому что идеал познания беспристрастной истины отождествлялся с академической жизнью. Благородный должен быть определен как член общества равных, которые живут плодами рабского труда или, во всяком случае, плодами труда людей, чье более низкое положение не вызывает сомнений. Необходимо заметить, что под это определение подходят и святой и мудрец, поскольку эти люди живут скорее созерцательной, чем активной жизнью.

Современные определения истины, которые даются, например, прагматизмом или инструментализмом – скорее практическими, чем созерцательными учениями, – являются продуктом индустриализма в его противоположности аристократизму.

Что бы мы ни думали о социальной системе, которая относится терпимо к рабству, мы обязаны чистой математикой благородным в вышеупомянутом смысле слова. Идеал созерцательной жизни, поскольку он вел к созданию чистой математики, оказался источником полезной деятельности. Это обстоятельство увеличило престиж самого этого идеала, оно принесло ему успех в области теологии, этики и философии, успех, которого в противном случае могло бы и не быть.

Так обстоит дело с объяснением двух сторон деятельности Пифагора: Пифагора как религиозного пророка и Пифагора как чистого математика. В обоих отношениях его влияние неизмеримо, и эти две стороны не были столь самостоятельны, как это может представляться современному сознанию.

При своем возникновении большинство наук было связано с некоторыми формами ложных верований, которые придавали наукам фиктивную ценность. Астрономия была связана с астрологией, химия – с алхимией. Математика же была связана с более утонченным типом заблуждений. Математическое знание казалось определенным, точным и применимым к реальному миру; более того, казалось, что это знание получали, исходя из чистого размышления, не прибегая к наблюдению. Поэтому стали думать, что оно дает нам идеал знания, по сравнению с которым будничное эмпирическое знание несостоятельно. На основе математики было сделано предположение, что мысль выше чувства, интуиция выше наблюдения. Если же чувственный мир не укладывается в математические рамки, то тем хуже для этого чувственного мира. И вот всевозможными способами начали отыскивать методы исследования, наиболее близкие к математическому идеалу. Полученные в результате этого концепции стали источником многих ошибочных взглядов в метафизике и теории познания. Эта форма философии начинается с Пифагора.

Как известно, Пифагор говорил, что «все вещи суть числа». Если это положение истолковать в современном духе, то в логическом отношении оно кажется бессмыслицей. Но то, что понимал под этим положением Пифагор, – не совсем бессмыслица. Пифагор открыл, что число имеет большое значение в музыке; об установленной им связи между музыкой и арифметикой напоминают до сих пор такие математические выражения, как «гармоническое среднее» и «гармоническая прогрессия». В его представлении числа, наподобие чисел на игральных костях или картах, обладают формой. Мы все еще говорим о квадратах и кубах чисел, и этими терминами мы обязаны Пифагору. Пифагор точно так же говорил о продолговатых, треугольных, пирамидальных числах и т. д. Это были числа горстей гальки (или, более естественно для нас, числа горстей дроби), требуемые для образования формы. Пифагор, очевидно, полагал, что мир состоит из атомов, что тела построены из молекул, состоящих в свою очередь из атомов, упорядоченных в различные формы. Таким образом, он надеялся сделать арифметику научной основой в физике, так же как и в эстетике.

Положение, согласно которому сумма квадратов сторон прямоугольного треугольника, прилежащих к прямому углу, равна квадрату третьей стороны – гипотенузы, было величайшим открытием Пифагора или его непосредственных учеников. Египтяне знали, что треугольник, стороны которого равны 3, 4 или 5, является прямоугольным, но, очевидно, греки первыми заметили, что 32 + 42 = 52 и, исходя из этого предположения, открыли доказательство общей теоремы.

К несчастью для Пифагора, эта его теорема сразу же привела к открытию несоизмеримости, а это явление опровергало всю его философию. В прямоугольном равнобедренном треугольнике квадрат гипотенузы равен удвоенному квадрату любой из сторон. Предположим, что каждый катет равен одному дюйму; какова в таком случае длина гипотенузы? Допустим, что ее длина равна т/n дюймов. Тогда / = 2. Если т и n имеют общий множитель, разделим их на него. В таком случае по крайней мере или т, или n должно быть нечетным. Но теперь учтем, что раз = 2 , следовательно, – четное и, стало быть, т – четное, a n – нечетное. В таком случае предположим, что т = 2 р. Тогда 4 р² = 2 п²; следовательно, п² = 2 р², следовательно, n – четное, что противоречит допущению. Поэтому гипотенузу нельзя измерить дробным числом т/п. Это доказательство является, по существу, доказательством, которое приводится у Евклида в книге X[32].

Это доказательство говорит о том, что, какую бы единицу длины мы ни выбрали, существуют отрезки, которые не находятся в точном числовом отношении к этой единице, то есть что нет таких двух целых чисел m и n, при которых рассматриваемый отрезок, взятый m раз, был бы равен единице длины, взятой n раз. Это положение привело греческих математиков к мысли, что геометрию следует развивать независимо от математики. Некоторые места в платоновских диалогах показывают, что в его время была принята независимая от арифметики трактовка геометрии; этот принцип получил свое завершение у Евклида. В книге II Евклид доказывает геометрически многое из того, что для нас естественнее было бы доказывать алгебраически, например, что (а + b)² = а² + 2аb + b². Евклид счел этот способ необходимым именно благодаря трудностям, связанным с несоизмеримостью величин. То же самое наблюдается и в толковании Евклидом пропорции в книгах V и VI. Вся система Евклида превосходна в логическом отношении, и она предвосхитила математическую строгость выводов математиков XIX века. Поскольку адекватной арифметической теории несоизмеримых величин не существовало, метод Евклида был наилучшим из возможных в геометрии методов. Когда Декарт ввел координаты в геометрию, снова вернув тем самым арифметике верховенство, он сделал предположение, что разрешение проблемы несоизмеримости вполне возможно, хотя в его время такое решение еще не было найдено.

Влияние геометрии на философию и научный метод было глубоким. Геометрия в таком виде, в каком она установилась у греков, отправляется от аксиом, которые являются самоочевидными (или полагаются таковыми), и через дедуктивные рассуждения приходит к теоремам, которые весьма далеки от самоочевидности. При этом утверждают, что аксиомы и теоремы являются истинными применительно к действительному пространству, которое является чем-то данным в опыте. Поэтому кажется возможным, используя дедукцию, совершать открытия, относящиеся к действительному миру, исходя из того, что является самоочевидным. Подобная точка зрения оказала влияние как на Платона и Канта, так и на многих других философов, стоявших между ними. Когда Декларация независимости говорит: «Мы утверждаем, что эти истины самоочевидны», – она следует образцу Евклида. Распространенная в XVIII веке доктрина о естественных правах человека является поиском евклидовых аксиом в области политики[33].

вернуться

32

Однако это доказательство не принадлежит самому Евклиду. См.: Th. Heath. Greek Mathematics. Вышеприведенное доказательство, вероятно, было известно еще Платону.

вернуться

33

Джефферсоновское «священное и неотъемлемое» было заменено Франклином на «самоочевидное».

14
{"b":"268337","o":1}