Литмир - Электронная Библиотека

М.Г Виноградова, Н.Н. Скопич

Можно ли исчерпать энергию, которой питается сердце?

Для того, чтобы понять энергетическую причину работы сердца, надо проникнуть на более глубинный уровень, нежели клеточный уровень биохимических процессов живой ткани: а именно – на атомный уровень. Новые аспекты в понимании природы атома оказываются связанными с физическими процессами в мышце сердца и выявляются как обусловленные происхождением Земли – формированием её вещества из сброшенной Юпитерианской оболочки / 1-13/. В результате Юпитерианского звёздного синтеза Земля как его планетное детище оказалась снабжённой биогенным углеродом и межмолекулярными связями особого свойства – водородными связями. Водородные связи как таковые были открыты в 80-х годах Х1Х века химиками М.А. Ильинским и Н.Н. Бекетовым. Ими было обнаружено, что водородные связи слабее ковалентных молекулярных связей, но сильнее обычного притяжения молекул друг к другу. Позднее было показано, что водородным связям дана особая роль именно в биологических тканях, их функциональным особенностям, например, способностью изменять и восстанавливать форму и объём сформированных из них органов. Для мышечных тканей способность к сокращению является главным свойством. Речь, прежде всего, идёт о биологических тканях с пептидной связью HCON водорода, углерода, кислорода и азота. Белок живых тканей представляет собой биополимер полипептид, содержащий сотни или тысячи аминокислотных звеньев. Аминокислотные цепи в фибриллярном белке обычно находятся в виде винтовых спиралей, ориентированных параллельно друг другу в кручёной структуре, за счёт чего она может менять свой объём [2, с. 483]. В мышечных тканях различают три типа: скелетную, гладкую и сердечную. Последняя состоит из миофибрилл с белковыми нитями миозина и актина. Посмотрим на характерную структуру нити мышечных белков, приводимую по данным американских авторов У. Слейбо и Т. Персонса.

Можно ли исчерпать энергию, которой питается сердце? (СИ) - _0.jpg

Где в спирали полипептидной цепочки Н – водород, С – углерод, О – кислород, N- азот, R- радикал аминокислоты.

«Отдельные спирали удерживаются как единое целое возникающими между ними водородными связями. По-видимому, при сжатии и растяжении мышц происходит перестройка водородных связей» [2, с. 483] .

А что же представляют собой водородные связи? Для того, чтобы иметь физическое понятие о водородных связях, обратимся к представлению об атоме как осцилляторе, которое ввёл ещё Макс Планк в 1900 году. После него такое представление об атоме как осцилляторе возобновилось только в работах современного немецкого физика Мартина Мюллера. Известна его Тюбингенская модель атома, сформулированная им в 1992-1994 годах в двух его работах. М. Мюллер называет колебания электрона в протонном поле механической осцилляцией с переходом потенциальной и кинетической энергий друг в друга по типу «протон играет в пинг-понг» электроном.

В работах /6, 7, 12/ было введено понятие о строении атома как о дипольной структуре, осуществляющей внутриатомное взаимодействие с эфиром: диполями атомов в пульсационном процессе растяжения-сжатия поглощаются и испускаются эфирные частицы нейтрино. Диполь – это элементарный магнитик, полюса которого p+ и e- скреплены в ячейку силой однажды выскочившего нейтрино. Пульсация осуществляется под действием внедряющегося в диполь нейтрино, создающего электродвижущую силу электромагнитной индукции для скачка электрона от протона в диполе. В атоме водорода электрон пульсирует относительно протона вправо и влево вдоль оси диполя, так что во время растяжения диполя нейтрино поглощается, во время сжатия – излучается вдоль оси диполя. Такая природа атома объясняет не только механизм внутриатомного взаимодействия с эфиром, но и взаимодействия атомов друг с другом в молекулярных и водородных межмолекулярных связях как пульсационный процесс. В 2001 году в нашей работе /11/ был опубликован вывод о постоянстве частоты пульсаций атома данной разновидности при любых возможных энергетических состояниях (так называемых «энергиях уровня»). Частота пульсации атома сохраняется вплоть до ионизации атома, когда атом теряет пульсирующий электрон /7/.

Для атома водорода нами было показано, что его диполь пульсирует с постоянной угловой частотой 3,29.1015 1/s (3,29 Femto) , обмениваясь с эфиром эфирными частицами нейтрино. Доказательством постоянства частоты пульсации водородных диполей является число Ридберга как одной из наиболее точно измеренных констант физики:

R H= щ/c =3,2888028.1015 1/s /2,99792.1010 cm/s = 109676,9 cm -1 ,

постоянство которой зиждется именно на постоянстве частоты пульсации соотносительно со скоростью света. Переменной величиной является амплитуда пульсации.

Именно благодаря внутриатомному взаимодействию с эфиром атом очень трудно разрушить: атом потеряет целостность при скорости его движения, превышающей скорость пульсации. Было показано, что частота пульсации диполей и энергия ионизации для всех атомов полностью взаимообусловлены друг другом через пульсационную постоянную Планка /6, с. 112/.Прочность атома тем выше, чем интенсивнее взаимодействие с эфиром, то есть частота обмена с эфирными частицами нейтрино, а значит – частота пульсации. Взаимодействие с эфиром скрепляет не только сами атомы, но и их связи друг с другом, то есть молекулы. Если атом водорода образовал молекулу с другим атомом, то электрон протия выглядит как бы прыгающим то в свой, то в соседний атом. В момент растяжения водородного диполя и поглощения нейтрино образуется сжатый диполь с реагирующим атомом с одновременным выделением нейтрино.

При близком значении частот пульсации реагирующих атомов может возникнуть явление резонанса. Например, в молекулярном взаимодействии атома водорода с другими атомами, например, кислорода или азота, на колебания электрона водородного атома накладываются возмущающие пульсации реагирующих с ним атомов. В области частот пульсации других атомов, близких к частоте пульсации атома водорода, может возникнуть резкое возрастание амплитуд вынужденных пульсаций. То есть, электрон может выпрыгивать за пределы своей молекулы, общаясь с другими молекулами. Эти связи, обусловленные близостью частот пульсации атомных диполей реагирующих с водородом атомов, и есть водородные связи. Сравним частоты пульсации атома водорода 3,288, кислорода 3,292 и азота 3, 514 (Femto 1/s) - они действительно близки другу. Они особенно близки у кислорода с водородом, в основе чего лежит близость их энергий ионизации: 13,618 эВ и 13, 598 эВ, отличающихся всего лишь на 2 сотых эВ. Здесь объясняется само название атома водорода как такового, имеющего назначение рождать особую структуру воды (что справедливо только для Юпитерианского кислорода).

Основу жизнеспособности вещества определяет сродство к водороду других атомов - их водородная сила, которая проявляется по-разному и связана с характером звёздного синтеза, обусловливающим частоту пульсации диполей и энергию ионизации, сходных с атомом водорода. Именно атомы Юпитерианского происхождения имеют сродство к водороду. Возникновение водородных связей как особого вида связи между атомом водорода одной молекулы и другими атомами (кислорода, азота) соседних молекул является свойством атомов вещества, синтезированного Юпитером на основе атома водорода.

Сила водородной связи определяется частотой межмолекулярного взаимодействия-пульсации электрона, которая нами в работе [4] определена как в 20 раз более слабая, чем молекулярная. Поскольку водородные связи на порядок, а может быть и на два порядка слабее обычных молекулярных, значит электрон водородного диполя, например, в карбоксильной группе COOH, общается с атомом кислорода соседней молекулы значительно реже, чем с атомом кислорода своей молекулы, куда он «прыгает» с вероятностью взаимодействия на порядок большей. Межмолекулярные связи поглощают меньшую долю внутриатомного взаимодействия с эфиром, чем молекулярные, и функционально труднее обнаружимы. Их существование может быть обнаружено физическими методами, например, испытанием на разрыв друг от друга отдельных мышечных волокон. Так как же можно представить себе водородные связи в биологических тканях в физических понятиях? Не иначе, как в виде сверхслабых импульсных токов достаточно высокой частоты (электронных импульсов) .

1
{"b":"267787","o":1}