Литмир - Электронная Библиотека

Уравнения движения тяжелого твердого тела вокруг неподвижной точки представляют систему шести дифференциальных уравнений, в левых частях которых стоят производные по времени от искомых функций, а в правых — полиномы второй степени от этих функций. Ковалевская стала искать решение системы, аналогичной указанной, но с меньшим числом переменных. В письме Миттаг-Леффлеру от 29 декабря 1884 г. [МЛ 35] она

180

рассматривает систему трех уравнений:

Софья Васильевна Ковалевская - _0.jpg

Ковалевская говорит, что линейным преобразованием эту систему можно привести к одному из более простых типов, например к такому:

Софья Васильевна Ковалевская - _1.jpg

В частном случае

Софья Васильевна Ковалевская - _2.jpg
эта система может быть проинтегрирована с помощью эллиптических функций а (гг), a именно, общий интеграл представляется в форме линейной функции трех отношений

Софья Васильевна Ковалевская - _3.jpg

где постоянные giy g2, gs, входящие в образование а, являются произвольными. Ковалевская отмечает важное свойство полученного ею решения: оно выражается с помощью однозначных функций от переменной гг, которые имеют не более одной существенно особой точки гг = «>, а для конечных значений гг — только полюсы первого порядка. Для случая произвольных значений а, 6, с,... Ковалевская ставит вопрос:

«Может ли система х, г/, z, удовлетворяющая уравнениям (I), вообще допускать полюсы, или же только существенно особые точки, другими словами,— возможно ли удовлетворить уравнениям (I) рядами вида

Софья Васильевна Ковалевская - _4.jpg

где m — целое положительное число (или, по крайней мере, какое угодно положительное число). Легко убедиться, что это возможно только в случае m = 1 и что тогда это всегда возможно».

181

Далее Ковалевская замечает, что при произвольных

Софья Васильевна Ковалевская - _5.jpg
ряды (II) будут определены с точностью до множителя, т. е. будут содержать лишь одну произвольную постоянную. Это показывает, что общие интегралы уравнений (I) должны бы иметь еще другие особенности, кроме полюсов.

В частном случае, когда имеется соотношение atb2c = = CLzbci, еще один коэффициент рядов (II) остается неопределенным, и ряды содержат три произвольных постоянных, следовательно, как и в указанном частном случае, имеем общее решение.

Ковалевская добавляет: «Это позволяет нам сделать заключение, что в этом [т. е. частном] случае общие, интегралы будут также однозначными функциями на всей плоскости, имея только одну существенно особую точку и=°°, а для конечных значений и — только полюсы первого порядка». Она надеется, что изучение свойств однозначных функций, существование которых она доказала, «возможно, прольет свет когда-нибудь на свойства более общих функций

Софья Васильевна Ковалевская - _6.jpg

где

Софья Васильевна Ковалевская - _7.jpg
— квадратичная форма п переменных» [75, с. 106].

На рассмотренной задаче, ясно виден ход мысли Ковалевской, который привел ее к открытию нового случая вращения.

Уже в 1886 г. Ковалевская получила основные результаты по своей задаче. В этом году Парижская академия наук объявила две премии на 1888 г. по физико-математическим наукам: одну по математике на большую премию математических наук, состоящую из медали и 3000 франков, — усовершенствовать теорию алгебраических функций двух независимых переменных, и другую — на премию Бордена, состоящую из медали и 3000 франков,— усовершенствовать в каком-нибудь важном пункте теорию движения твердого тела (см. Примечание 2).

Шарль Лоран Борден был нотариусом, передавшим в 1835 г. Институту Франции ренту в 15 000 франков, которая должна была распределяться поровну между пятью академиями Франции. Темы, которые могли выдвигаться на конкурс, согласно завещанию Бордена, должны были иметь целью общественные интересы, благо человечества, прогресс науки и национальную честь.

182

Ковалевская решила представить свою работу на премию Бордена. Однако ей предстояло еще произвести огромные математические выкладки и оформить работу, В письме к Миттаг-Леффлеру, относящемуся к лету 1888 г., она говорит:

«Моя голова так теперь полна математикой, что я не могу ни думать, ни говорить о чем-нибудь другом. Я пришла к определенному результату, и к очень приятному притом, а именно, что этот случай задачи о вращении интегрируется действительно посредством ультраэл- липтических функций. Но мне еще предстоит разработать окончательные формулы, и я не знаю, успею ли я это сделать до конца месяца. Не могу не сообщить Вам несколько подробнее о своей работе. Вследствие недостатка времени буду писать очень коротко, но, пожалуйста, постарайтесь все же вникнуть в вопрос» [СК 273].

Остановимся на этой задаче и выпишем систему шести уравнений движения тяжелого твердого тела вокруг неподвижной точки, состоящую из двух групп уравнений [146]:

Софья Васильевна Ковалевская - _8.jpg

Здесь X, y, z — координаты произвольной точки тела в подвижной системе координат, неизменно связанной с движущимся телом, причем начало координат помещено в неподвижной точке тела; р, q, г — составляющие вектора угловой скорости вращения тела; у, у', ч" “ направляющие косинусы вертикальной оси относительно подвижных осей (х, у, z), Далее, через М обозначается масса тела, через (х0, у0, Zo) — координаты центра его тяжести, g — ускорение силы тяжести, А, В, С —главные моменты инерции тела, т. е. выражения

Софья Васильевна Ковалевская - _9.jpg

183

Задача состоит в нахождении

Софья Васильевна Ковалевская - _10.jpg
как функций времени, если известны начальные значения их
Софья Васильевна Ковалевская - _11.jpg
в момент времени
Софья Васильевна Ковалевская - _12.jpg
При этом между
Софья Васильевна Ковалевская - _13.jpg
должно выполняться соотношение
Софья Васильевна Ковалевская - _14.jpg
Софья Васильевна Ковалевская - _15.jpg

Известно, что система уравнений (1), (2) имеет три первых интеграла:

Софья Васильевна Ковалевская - _16.jpg

Система уравнений (1), (2) автономна, т. е. время в нее входит лишь в виде dt, поэтому, разрешив уравнения (1) относительно производных и разделив почленно все уравнения на одно из них, получают пять уравнений. Теория последнего множителя позволяет найти еще один интеграл. Поэтому достаточно иметь вдобавок к (3) еще один, четвертый интеграл, чтобы получить полное решение задачи.

Были известны такие частные случаи, когда имеется четвертый интеграл — он является также алгебраическим.

1.       Случай Эйлера, когда Xo=y0=z0=0, т. е. центр тяжести совпадает с неподвижной точкой. Здесь нетрудно найти четвертый интеграл

Софья Васильевна Ковалевская - _17.jpg
Выпишем лишь один член решения, определяющий зависимость между t и q (для случая, когда B>D, где D оп-* ределено ниже) :

Софья Васильевна Ковалевская - _18.jpg

84

Функция q (t) находится обращением эллиптического интеграла (4):

Софья Васильевна Ковалевская - _19.jpg

Для риг получены аналогичные соотношения;

Софья Васильевна Ковалевская - _20.jpg
определяются из уравнений

50
{"b":"267594","o":1}