Литмир - Электронная Библиотека
A
A

В 1932 и 1933 гг. в Пасадине часто видели Бааде и Цвикки, оживленно беседующими по-немецки о так называемых «новых» звездах, которые неожиданно вспыхивают и начинают светить в десятки тысяч раз ярче, чем до этого, а затем примерно за месяц медленно блекнут до нормального состояния. Бааде, имевший энциклопедические познания в астрономии, был знаком с экспериментальными свидетельствами того, что кроме «обычных» новых должны существовать и необычные, редкие, сверхъяркие новые. Поначалу астрономы не подозревали, что эти новые являются сверхъяркими, поскольку в телескоп они имели примерно ту же светимость, что и обычные новые. Однако, располагались они в своеобразных туманностях (светящихся облаках). Наблюдения, проведенные в Маунт Вильсон и других обсерваториях в 1920-х годах, начали убеждать астрономов, что эти туманности не просто облака газа в нашем Млечном Пути, как думали ранее, но представляют собой равноправные галактики — гигантские скопления, содержащие около 1012 (т. е. триллионов) звезд и находящиеся далеко за пределами нашей Галактики. Отдельные наблюдаемые в этих галактиках новые звезды, будучи расположены много дальше, чем обычные новые нашей Галактики, должны быть существенно более яркими, чтобы при наблюдении с Земли иметь ту же светимость.

Бааде собрал все данные наблюдений, какие только смог найти в литературе относительно каждой из шести сверхъярких новых, наблюдавшихся астрономами с начала столетия. Эти данные он объединил со всей доступной ему информацией о расстоянии до галактик, в которых находились эти звезды, и соединив все это, вычислил, сколько света испускает сверхъяркая новая. Вывод оказался поразительным: во время вспышки такие новые были обычно в 108 (т. е. в 100 миллионов) раз ярче, чем наше Солнце! (Сегодня мы знаем, во многом благодаря работам самого Бааде 1952 г., что оценка расстояния до галактик в 1930 г. была занижена примерно в 10 раз и что, соответственно, сверхъяркие звезды были почти в 1010 (10 миллиардов) раз ярче Солнца.[66])

Любитель крайностей, Цвикки был пленен этими сверхяркими новыми. Именно Бааде и Цвикки, несчетное число раз обсуждая эти звезды, дали им имя сверхновые. Каждая сверхновая, как они (справедливо) полагали, образуется в результате взрыва обычной звезды. И этот взрыв, как они подозревали (на этот раз неверно), столь горяч, что гораздо больше энергии испускается в виде ультрафиолетового и рентгеновского излучения, чем в виде обычного света. Поскольку ультрафиолетовое и рентгеновское излучение не может проникать сквозь земную атмосферу, невозможно и измерить содержащуюся в нем энергию. Однако эту энергию можно оценить, исходя из наблюдаемого спектра и законов физики, управляющих горячим газом от взрывающейся сверхновой.

Объединив знания Бааде о наблюдениях новых звезд и понимание Цвикки законов теоретической физики, два друга пришли к заключению (неверному), что ультрафиолетовое и рентгеновское излучение сверхновых должно нести в 10 тысяч, а возможно, и в 10 миллионов раз, больше энергии, чем видимый свет. Цвикки со своей любовью к крайностям настаивал именно на верхней оценке — 10 миллионов, и с энтузиазмом на нее ссылался.

Черные дыры и складки времени. Дерзкое наследие Эйнштейна - i_041.jpg

Галактика NGC 4725 в созвездии Волосы Вероники.: фотография 10 мая 1940 г. до взрыва сверхновой. Справа: 2 января 1941 г. во время взрыва. Белая стрелка указывает на сверхновую на окраине галактики. Как сейчас известно, эта галактика находится на расстоянии 30 миллионов световых лет от Земли и содержит 3x1011 (треть триллиона) звезд. [Предоставлено Калифорнийским технологическим институтом]

Этот неверный коэффициент означал, что в течение нескольких дней максимальной яркости сверхновая испускает чудовищное количество энергии: Солнце за всю свою жизнь длиной в 10 миллиардов лет излучает в виде света и тепла примерно лишь в 100 раз больше. Это примерно такое количество энергии, которое можно было бы получить, превратив одну десятую часть массы Солнца в чистую энергию излучения! (Благодаря десятилетиям последующих наблюдений сверхновых, многие из которых были проведены самим Цвикки, теперь мы знаем, что оценка Бааде — Цвикки энергии сверхновых была не столь далека от истины. Однако их вычисления имели существенный недостаток: как теперь стало понятно, почти вся теряемая энергия уносится частицами, называемыми нейтрино, а не ультрафиолетовым и рентгеновским излучением, как они полагали. Бааде и Цвикки получили верный ответ лишь благодаря счастливой случайности.)

Какова же природа огромной энергии сверхновой? Чтобы ответить на этот вопрос, Цвикки и изобрел нейтронную звезду.

Цвикки интересовался всеми разделами физики и астрономии, а также воображал себя философом. Он пытался объединить все явления, с которыми сталкивался, в нечто, впоследствии названное им «морфологической моделью». В 1932 г. самым популярным из всех направлений в физике и астрономии была ядерная физика, изучение атомных ядер. Именно отсюда извлек Цвикки ключевую составляющую своей идеи нейтронных звезд — концепцию нейтрона.

* * *

Поскольку нейтрон будет играть в дальнейшем очень важную роль в этой главе, я слегка отвлекусь от Цвикки и от его нейтронных звезд, чтобы рассказать об открытии нейтрона и его связи со структурой атомов.

После того как в 1926 г. были сформулированы «новые» законы квантовой механики (глава 4), последующие пять лет физики провели в непрестанных исследованиях микромира. Они приоткрыли завесу тайны над атомами (Врезка 5.1) и над строением молекул металлов, кристаллов и вещества белых карликов, построенных из этих атомов. Затем в 1931 г. физики обратили внимание на внутреннее строение атома — его оболочку и ядро.

Природа атомного ядра оставалась большой загадкой. Большинство физиков думали, что оно сделано из горсти электронов и вдвое большего числа протонов, связанных неким, пока непонятным, способом. Однако у Эрнста Резерфорда из Кембриджа (Англия) была другая гипотеза: протоны и нейтроны. О существовании протонов было уже известно. Их несколько десятилетий исследовались в физических экспериментах, позволивших установить, что они почти в 2000 раз тяжелее электронов и несут положительный заряд. Нейтроны же известны не были.

Врезка 5.1

Внутренние структуры атомов

Атом состоит из электронного облака, окружающего массивное центральное ядро. Электронное облако имеет размер примерно равный 10 см (в миллион раз меньше диаметра человеческого волоса), а ядро еще в 100 000 раз меньше, примерно 10 см (см. рисунок внизу). Если бы электронное облако увеличилось до размера Земли, то ядро стало бы размером с футбольное поле. Несмотря на крошечный размер, ядро в несколько тысяч раз тяжелее электронного облака.

Черные дыры и складки времени. Дерзкое наследие Эйнштейна - i_042.png

Отрицательно заряженные электроны удерживаются в облаке притяжением положительного электрического заряда ядра и не падают на ядро по той же самой причине, по которой не схлопывается звезда — белый карлик: Закон квантовой механики, называемый принципом Паули, запрещает больше чем двум электронам занимать в одно и то же время одну и ту же область пространства (два могут, если имеют противоположные «спины» — деталь, игнорируемая в главе 4).

Поэтому электроные облака попарно объединены в ячейках пространства, называемых «орбиталями». Каждая пара электронов, протестуя против заключения ее в тесной ячейке, совершает беспорядочные быстрые «клаустрофобные» движения, так же как и электроны в белом карлике (глава 4). Эти движения приводят к «электронному давлению вырождения», которое противодействует электрическому притяжению ядра. Таким образом, атом можно считать похожим на крошечную звезду белый карлик, в которой электронному давлению вырождения, выталкивающему электроны наружу, противодействуют затягивающие их внутрь электрические, а не гравитационные силы.

На правой картинке внизу на предыдущей странице дан набросок описанной структуры атомного ядра — это крошечный кластер протонов и нейтронов, скрепляемый ядерной силой.

вернуться

66

Количество достигающего Землю света обычно обратно пропорционально квадрату расстояния до сверхновой; поэтому ошибка в расстоянии в 10 раз означала ошибку в оценках Бааде полного излучения в 100 раз.

41
{"b":"265797","o":1}