71. Заяц, убегая от волка, пытается пробраться в пункт В. Уходя от погони, он петляет, двигаясь из А в В по кривой А С D В по дугам малых окружностей так, как это показано стрелками на рисунке. Преследующий его волк начал движение из пункта А мгновением позже и, надеясь настичь зайца в пункте В, движется по дуге большой окружности. Догонит ли он зайца в пункте В, если их скорости совершенно одинаковы?
72. На какие три числа (не считая единицу) делятся без остатка следующие числа: 1110, 999, 888, 777, 666, 555, 444, 333, 222, 111?
73. Кате вдвое больше лет, чем будет Насте тогда, когда Оле исполнится столько лет, сколько сейчас Кате. Кто из них старше, а кто младше?
74. В одном классе ученики разделились на две группы. Одни должны были всегда говорить только правду, а другие – только неправду. Все ученики класса написали сочинение на свободную тему, которое должно было заканчиваться фразой: «Все, здесь написанное, правда» или «Все, здесь написанное, ложь». В классе было 17 правдолюбцев и 18 лжецов. Сколько получилось сочинений с утверждением о правдивости написанного?
75. Сколько всего прапрадедушек и прапрабабушек было у всех ваших прапрадедушек и прапрабабушек?
76. На столе лежит в разложенном виде носовой платок. На нем в центре стоит горлышком вниз пустая стеклянная бутылка. Как вытянуть платок из-под бутылки, не прикасаясь к ней?
77. 5 + 5 + 5 = 550
В левой части равенства надо поставить только одну черточку или палочку для того, чтобы равенство получилось истинным.
78. Докажем, что три раза по два будет не шесть, а четыре. Возьмем спичку, сломаем ее пополам. Это один раз два. Потом возьмем половинку и сломаем ее пополам. Это второй раз два. Затем возьмем оставшуюся половинку и ее тоже сломаем пополам. Это третий раз два. Получилось четыре. Следовательно, три раза по два будет четыре, а не шесть. Найдите ошибку в этом рассуждении.
79. Как соединить девять точек между собой четырьмя линиями, не отрывая карандаша от бумаги?
80. В магазине хозяйственных товаров покупатель спросил:
– Сколько стоит один?
– Двадцать рублей, – ответил продавец.
– Сколько стоит двенадцать?
– Сорок рублей.
– Хорошо, дайте мне сто двенадцать.
– Пожалуйста, с вас шестьдесят рублей.
Что покупал посетитель?
81. Если в двенадцать часов ночи идет дождь, то можно ли ожидать, что через 72 часа будет солнечная погода?
82. Три человека заплатили за обед 30 рублей (каждый по 10). После их ухода хозяйка обнаружила, что обед стоит не 30, а 25 рублей и отправила мальчика с 5 рублями вдогонку. Каждый из путников взял себе по рублю, а 2 рубля они оставили мальчику. Выходит, что каждый из них заплатил не по 10, а по 9 рублей. Их было трое: 9 × 3 =27, и еще два рубля у мальчика: 27 + 2 = 29. Куда делся рубль?
83. В бассейн площадью 1 Га налили 1 000 000 литров воды. Можно ли плавать в таком бассейне?
84. Что больше: квадратный корень из двух или кубический корень из трех?
85. У одного мальчика не хватает до стоимости линейки 24 коп., а у другого не хватает до этой стоимости 2 коп. Когда они сложили свои деньги вместе, то все равно не смогли купить линейку. Сколько стоит линейка?
86. В одном парламенте депутаты разделились на консерваторов и либералов. Консерваторы говорили только правду по четным числам, а по нечетным они говорили только неправду. Либералы, наоборот, говорили только правду по нечетным числам, а по четным числам они говорили только неправду. Каким образом с помощью одного вопроса, заданного любому депутату, можно точно установить, какое сегодня число: четное или нечетное? Ответы должны быть определенными: «да» или «нет».
87. Бутылка с пробкой стоит 1 руб. 10 коп. Бутылка дороже пробки на рубль. Сколько стоит бутылка и сколько стоит пробка?
88. Возраст человека в 1998 году оказался равным сумме цифр года его рождения. Сколько ему лет?
89. Катя живет на четвертом этаже, а Оля – на втором. Поднимаясь на четвертый этаж, Катя преодолевает 60 ступенек. Сколько ступенек надо пройти Оле, чтобы подняться на второй этаж?
90. Математик написал на листке двузначное число. Когда он перевернул листок вверх ногами, число уменьшилось на 75. Какое число было написано?
91. У Саши три брата. Один старше на 3 года, второй на 3 года младше, третий моложе Саши втрое, а отец втрое старше Саши. Всем им вместе 95 лет. Сколько лет каждому из них?
92. Прямоугольный лист бумаги сложили пополам шесть раз. На сложенном листе сделали 2 дырки. Сколько дырок будет на листе, если его развернуть? (Дырки сделаны не на сгибах).
93. В пустую стеклянную бутылку напустили дыма. Как вытряхнуть или вывести дым из бутылки, не наливая в нее воду или какую-нибудь другую жидкость?
94. Корзинка с фруктами весит 11 кг. Фрукты тяжелее корзинки на 10 кг. Сколько весит корзинка, и сколько весят фрукты?
95. Кусок бумаги имеет форму прямоугольника, одна сторона которого равна 4, а другая 9 единицам длины. Как разрезать этот прямоугольник на две равные части, таким образом, чтобы, сложив их, получить квадрат?
96. Два отца и два сына поймали трех зайцев: каждый по одному. Как такое возможно?
97. У Насти дома живут разные животные: все, кроме двух, – попугаи; все, кроме двух, – котята; все, кроме двух, – кролики. Сколько домашних животных у Насти?
98. Собеседник предлагает вам задумать любое трехзначное число. Потом он просит продублировать его, чтобы получилось шестизначное число. Например, вы задумали число 389, продублировав его, имеем шестизначное число – 389389; или 546 – 546546 и т. п. Далее собеседник предлагает вам это задуманное наобум число разделить на 13. «Вдруг получится без остатка», – говорит он. Вы производите деление с помощью калькулятора (можно и без него) и действительно ваше шестизначное число делится на 13 без остатка. Далее он предлагает вам получившийся результат разделить на 11. Вы делите, и опять получается без остатка. И, наконец, собеседник просит вас разделить получившийся результат на 7. Деление не только проходит без остатка, но и дает в результате то самое трехзначное число, которое вы произвольно выбрали сначала. Каким образом это происходит?
99. Как разделить фигуру, состоящую из трех одинаковых квадратов на четыре равные части?
100. Сто школьников одновременно изучали английский и немецкий языки. По окончании курсов они сдавали экзамен, который показал, что 10 школьников не освоили ни тот, ни другой язык. Из оставшихся немецкий сдали 75 человек, а английский – 83. Сколько экзаменовавшихся владеет обоими языками?