Литмир - Электронная Библиотека

Нас учили, что машина – продолжение руки человека. Но даже это уже неверно. В течение 5000 лет кирпичник мог делать 5оо кирпичей в день. Благодаря технологии стало возможным, чтобы один человек с помощью соответствующих вспомогательных машин делал 500 тысяч кирпичей в день. Но в результате биоморфных изменений и кирпичник, и кирпичи уходят в прошлое: теперь мы целиком формируем внешнюю поверхность постройки, то есть создаем многослойную панель с системами отопления, освещения, охлаждения и т.д.

Общую цепь превращений лучше всего показать на следующем примере. Известно, что поглощение 10 тысяч фунтов радиолярии дает жизнь тысяче фунтов планктона; тысяча фунтов планктона позволяет существовать ста фунтам мелких морских животных; эти животные, в свою очередь, создают десять фунтов рыбы; нужно десять фунтов рыбы, чтобы создать один фунт мышечной ткани в человеческом организме. «Потери на трение» в системе просто ошеломляющи. В Северной Америке 168 тысяч видов насекомых; на поле площадью 40 акров находится в 6-8 раз больше живого белка в виде насекомых, чем может дать жвачный скот. На самом деле мы едим мух; просто сначала они перерабатываются в траву, затем в коров и молоко.

Можно возразить, что обычному промышленному дизайнеру или инженеру не хватает подготовки в области естественных наук, чтобы использовать биологию в своей профессии. Возможно, это и верно, если мы пытаемся определить слово «бионика» в самом узком смысле, на кибернетическом или нейрофизиологическом уровне. Но нас окружают явления природы и естественные структуры, которые еще по-настоящему не исследовались, не эксплуатировались и не использовались дизайнерами; биологические схемы, требующие исследования, доступны любому человеку, у которого есть свободное время на воскресную прогулку.

Возьмем, например, семена. Простое семя клена (Асегасеае saccharum), летящее с высоты даже нескольких футов над землей, будет падать по спирали. Этот метод доставки с высоты на землю пока еще не нашел какого-либо полезного применения. Джордж Филиповски придумал, как использовать полетные характеристики семян клена для тушения лесных пожаров или доставки противопожарных средств в труднодоступные районы. Из недорогой сверхлегкой пластмассы было сконструировано искусственное семя клена длиной примерно в восемь и две третьих дюйма. В то место, где находились семена, насыпали огнетушительный порошок. Эксперименты и исследования показали, что, когда кленовые семена (искусственные или настоящие) бросают в воздух над огнем, они естественным образом попадают в восходящие потоки теплого воздуха над пламенем Если же семена будут опущены ниже уровня восходящих потоков, в зону полувакуума, их траектория полета восстановится, и они полетят к наиболее горячей точке огня. Но вернемся к пластмассовым кленовым семенам. С летательного аппарата можно сбросить тысячи таких семян в мешках, раскрывающихся через определенный промежуток времени в тот момент, когда они опускаются ниже зоны восходящих воздушных потоков. Тысячи пласт массовых кленовых семян по кругу направляются к самой горячей точке пламени, где их оболочка сгорает и высвобождается огнетушитель. Это, конечно, не способ тушения лесных пожаров. Но так можно добраться до каньонов и других мест, которые недоступны с земли, или парашютистам лесной охраны. Этот способ тушения пожаров прошел успешные испытания в Британской Колумбии.

Возобновление лесопосадок в тундре в самых северных районах Аляски, Канады, Лапландии и России, а также возобновление там популяций рыб реально с помощью водорастворимых кленовых семян, содержащих семена, споры или икру. Конечно, эти искусственные кленовые семена могут также содержать питательный раствор, служить термопротекторами или переносить удобрения. Министерство окружающей среды и природных ресурсов Канады с успехом провело испытания этой системы.

С помощью искусственных кленовых семян можно распространять практически любой материал; диапазон допустимых размеров семян удивительно широк: я сконструировал оптимально действующие искусственные кленовые семена с размахом крыла до 46 дюймов. Но хорошо показали себя семена длиной от 1/8 дюйма.

У семян белого ясеня (Fraxinus americana) почти такие же характеристики, как у кленовых семян. При отсутствии ветра они падают почти прямо вниз, вращаясь по узкой спирали. При сильном ветре семена летят горизонтально или, будучи очень легкими, некоторое время поднимаются, продолжая быстро вращаться. Если масса семян сконцентрирована в небольшой плотной сфере, они падают гораздо быстрее, так как из-за уменьшенной площади поверхности трение о воздух сокращается. Однако, если бы семя было пустой сферой той же массы и с тем же поверхностным замедлением, но не вращалось бы, оно падало бы еще быстрее. Таким образом, мы видим, что вращение замедляет падение семян. Это объясняется тем, что при вращении семена используют энергию, которая в ином случае ускоряла бы падение.

Семена липы американской {Jilia americana) отличаются своей необычной траекторией полета. «Крылья» ускоряют вращательное движение по мере того, как семена медленно опускаются дрейфуя по ветру, несмотря на (сравнительно) большой вес двойного семени, которое торчит из крыльев на раздвоенной плодоножке.

Характеристики полета всех этих вращающихся по спирали семян еще недостаточно изучены. Вращение по спирали таких семян, искусственно воспроизведенное в другой среде, помимо воздуха (вода, масло, бензин), в практически полном вакууме или при разной гравитации также может стать богатым источником дизайнерских концепций.

Семена китайского ясеня-айланта (Ailanthus altissima) при падении быстро вращаются вокруг своей продольной оси, делая полный оборот за то время, пока они опускаются примерно на четверть своей длины. Геометрию этого семени можно приблизительно показать с помощью свернутой бумаги (см. иллюстрацию). В первой имитации оба конца закручены одинаково, что в природе встречается редко. В этом случае семя при безветрии опускается по прямой линии под углом примерно сорок пять градусов к горизонтали. Если же концы закручены неодинаково, как показано во второй имитации, семя летит по траектории, сочетающей спираль с осевым вращением. Вращающийся конец притягивает воздух от края семени внутрь, к его центру. В результате вокруг семени и под ним появляется зона высокого давления, которая замедляет его спуск. Когда вращательные движе-1151 одинаковы, обе стороны подают одинаковое количество воздуха к центру, в результате чего в этой области давление понижается. Следовательно, на семя воздействуют неравные силы. Семя скользит по осевой в направлении области более низкого давления. Таким образом, вместо того чтобы лететь по прямой линии, семя спускается по спирали. Сочетание осевого вращения, скольжения и спирального спуска придает каждому семени очень медленный и почти хаотичный полет. Для искусственных «семян» все эти характеристики – замедление, вращение скорость спуска, отклонение от курса, скольжение – могут быт программированы.

Семена дикого лука (Allium cernuum) и козлобородника им ют совершенно различные траектории полета. Семена диког лука – тонкая структура лучеобразных, кружевных, зонтичных образований. Десятки семян образуют подобный паутине шарик вокруг центрального стебля растения. Этот шар – сфера постоянного давления и прерывистого сжатия. Зонтики тесно переплетены и слегка повернуты внутрь. Когда они отделяются, тонкие волокна становятся плоскими и теряют свою выпуклость. Каждый «парашют», отделившийся от сферы, совершает резкий кувырок, чтобы его ворсинки не зацепились за другие семена. Эти семена падают как крошечные парашюты, только гораздо медленнее. Так как в отличие от парашютов у этих структур плоская верхушка в форме диска, состоящая из тонко переплетенных волосков, их скорость и траектория падения могут пригодиться в тех областях, где бесполезны обычные парашюты. Кроме того, их кружевной купол не может быть обнаружен с помощью радара.

47
{"b":"262095","o":1}