Литмир - Электронная Библиотека
Содержание  
A
A

В эволюции жизни на Земле мы различаем три достаточно объемлющие эпохи, каждая из которых охватывает временной период от одного до двух миллиардов лет и состоит из нескольких отдельных стадий (см. таблицу на стр. 254). Первая эпоха — предбиотическая, в течение которой формировались условия для возникновения жизни. Она длилась один миллиард лет, от формирования Земли до возникновения начальных форм жизни — первых клеток — около 3,5 миллиардов лет назад. Вторая эпоха, длившаяся полных два миллиарда лет, — это эпоха микрокосма, когда бактерии и другие микроорганизмы изобрели все базовые процессы жизни и сформировали глобальные циклы обратной связи для саморегуляции системы Гайи.

Около 1,5 миллиардов лет назад были, в основном, сформированы поверхность и атмосфера Земли в их нынешнем виде; микроорганизмы заполнили воздух, воду и почву, циклически перегоняя газы и питательные вещества по своей планетарной сети, как они делают это и сегодня; и, наконец, были созданы условия для перехода к третьей эпохе жизни — макрокосму, — эпохе эволюции более крупных форм жизни, включая и род человеческий.

Происхождение жизни

В течение первого миллиарда лет после формирования Земли постепенно складывались условия для появления жизни. Изначальный огненный шар был достаточно велик для того, чтобы удерживать атмосферу. Кроме того, он содержал основные химические элементы, из которых предстояло сформироваться строительным блокам жизни. Расстояние от Солнца оказалось оптимальным — достаточно далеким, чтобы начался процесс медленного охлаждения и конденсации, и в то же время достаточно близким, чтобы не наступило сжижение и замерзание газов.

После полумиллиарда лет постепенного охлаждения пар, наполнявший атмосферу, наконец сконденсировался; обильные дожди не прекращались тысячелетиями, и на поверхности Земли скопилось столько воды, что из нее образовались неглубокие океаны. В течение этого продолжительного периода углерод — химический костяк жизни — активно соединялся с водородом, кислородом, азотом, серой и фосфором, порождая бесконечное разнообразие химических соединений. Эти шесть элементов — С, Н, О, N, S, Р — и сейчас являются основными химическими ингредиентами всех живых организмов.

Эпохи жизни

Миллиардов лет назад

Стадии эволюции

ПРЕДБИОТИЧЕСКАЯ ЭРА

формирование условий

для жизни

4,5

формирование Земли

охлаждение огненного шара

раскаленной лавы

4,0

старейшие горные породы

конденсация пара

3,8

мелкие океаны

соединения на углеродной

основе

каталитические циклы,

мембраны

МИКРОКОСМ

эволюция микроорганизмов

3,5

первые бактериальные клетки

ферментация фотосинтез

сенсорные механизмы,

движение

починка ДНК

обмен генами

2,8

тектонические платформы,

континенты

кислородный фотосинтез

2,5

повсеместное распространение

бактерий

2,2

первые ядерные клетки

2,0

закрепление кислорода в

атмосфере

1,8

дыхание на основе кислорода1

1,5

формирование поверхности и

атмосферы Земли

МАКРОКОСМ

эволюция более крупных

форм жизни

1,2

передвижение

1,0

половое размножение

0,8

митохондрии, хлоропласты

0,7

первые животные

0,6

раковины, скелеты

0,5

первые растения

0,4

сухопутные животные

0,3

динозавры

0,2

млекопитающие

0,1

цветковые растения

первые приматы

В течение долгих лет ученые обсуждали вероятность возникновения жизни из «химического супа», который настаивался по мере охлаждения планеты и расширения океанов. Было высказано немало гипотез о внезапных событиях, послуживших первичным толчком, — от драматической вспышки мощной молнии и вплоть до осеменения Земли макромолекулами посредством метеоритов. Другие ученые возражали, что вероятность наступления любого из этих событий практически равна нулю. Тем временем, как выяснилось в результате новейших исследований самоорганизующихся систем, нет принципиальной необходимости постулировать какое-либо внезапное событие.

Как отмечает Маргулис, «химические вещества соединяются не случайным образом, а упорядочение, по определенным паттернам»22. Окружающая среда ранней Земли благоприятствовала образованию сложных молекул, ставших затем катализаторами для множества химических реакций. Постепенно различные каталитические реакции сомкнулись, образовав сложные каталитические паутины из замкнутых петель: сначала это были просто циклы, затем гиперциклы, затем структуры с сильной тенденцией к самоорганизации и даже самовоспроизведению23. Когда была достигнута эта стадия, определилось и направление предбиологической эволюции. Каталитические циклы эволюционировали в диссипативные структуры и, проходя через последовательные нестабильные состояния (точки бифуркации), образовывали химические системы все большей сложности и разнообразия.

В конце концов эти диссипативные структуры начали формировать мембраны — сначала, видимо, из жирных кислот без протеинов, подобно недавно полученным в лаборатории мицеллам24. Маргулис полагает, что именно тогда могли возникнуть многообразные самовоспроизводящиеся химические системы, заключенные в мембрану; некоторое время они эволюционировали и исчезали, прежде чем появились первые клетки: «Должно было развиться множество диссипативных структур, длинных цепочек различных химических реакций, которые эволюционировали, вступали в реакции и разрушались, прежде чем сформировалась и начала с высокой точностью воспроизводиться элегантная двойная спираль нашего древнего предка»25. В этот период, около 3,5 миллиардов лет назад, зародились первые автопоэзные бактериальные клетки и началась эволюция жизни.

Как сплеталась бактериальная паутина

Существование первых клеток было шатким. Окружающая среда непрерывно менялась, и каждая случайность представляла новую угрозу их выживанию. Перед лицом всех враждебных сил — жесткого облучения солнечным светом, столкновений с метеоритами, наводнений, засух и извержений вулканов — бактериям приходилось захватывать и удерживать энергию, воду и пищу, чтобы оставаться живыми и целыми. Каждый кризис, несомненно, сметал значительную часть первых островков жизни с лица планеты, и это быстро закончилось бы полным уничтожением, если бы не две жизненно важные особенности тех первых форм: бактериальные ДНК способны к точному воспроизведению и осуществляют его с неимоверной скоростью. В силу своего огромного количества бактерии снова и снова творчески реагировали на все угрозы и развивали разнообразные адаптивные стратегии. Так они постепенно распространялись, сначала в водной среде, а затем и в поверхностных слоях осадочных пород и почвы.

Очевидно, наиболее важная задача состояла в том, чтобы развить достаточное разнообразие метаболических способов извлечения энергии и пищи из окружающей среды. Одним из первых изобретений бактерий стала ферментация, т. е. расщепление Сахаров и преобразование их в энергетические носители — молекулы АТФ, которые подпитывают энергией все клеточные процессы26. Эта инновация позволила бактериям, способным к ферментации, добывать химические вещества в земле, грязи и воде, защищаясь тем самым и от жесткого солнечного облучения.

58
{"b":"251756","o":1}