Литмир - Электронная Библиотека
Содержание  
A
A

Эти исследования получили новый толчок, когда стало ясно, что недавно разработанные элементы теории динамических систем — аттракторы, фазовые портреты, схемы бифуркации и т. п. — могут быть использованы в качестве эффективных инструментов для анализа моделей математических сетей. Взяв на вооружение эти новые методы, ученые снова обратились к двоичным сетям, разработанным в 40-е годы, и обнаружили, что, хотя это не автопоэзные сети, их анализ приводит к удивительным открытиям в области сетевых паттернов живых систем. Значительную часть этой работы выполнил биолог-эволюционист Стюарт Кауффман совместно с коллегами в институте Санта-Фе, Нью-Мехико14.

Поскольку изучение сложных систем с помощью аттракторов и фазовых портретов во многом связано с развитием теории хаоса, перед Кауффманом и его коллегами встал естественный вопрос: какова роль хаоса в живых системах? Мы и теперь еще далеки от полного ответа на этот вопрос, однако работа Кауффмана привела к нескольким интереснейшим идеям. Чтобы понять их, нам придется более пристально рассмотреть двоичные сети.

Двоичная сеть состоит из узлов, или переключателей, каждый из которых может находиться в одном из двух состояний, обычно обозначаемых ВКЛ и ВЫКЛ. То есть эта сеть более ограничена в возможностях, чем клеточный автомат, клетки которого могут находиться больше чем в двух состояниях. С другой стороны, узлы двоичной сети не обязательно образуют регулярную решетку, но могут быть соединены между собой более сложными способами.

Двоичные сети называют также «булевыми сетями», по имени английского математика Джорджа Буля, который использовал двоичные («да-нет») операции в середине XIX века для разработки символической логики, известной теперь как булева алгебра. На рис. 9-2 показана простая двоичная, или булева, сеть с шестью переключателями, каждый из которых подключен к трем соседним, причем два переключателя находятся в состоянии ВКЛ (черный цвет), а четыре — ВЫКЛ (белый цвет).

Паутина жизни. Новое научное понимание живых систем - doc2fb_image_02000032.jpg
Рис. 9-2. Простая двоичная сеть

Как и в случае клеточного автомата, паттерн переключателей ВКЛ-ВЫКЛ в двоичной сети меняется дискретным образом. Переключатели соединены между собой так, что состояние каждого переключателя определяется предыдущими состояниями соседних переключателей в соответствии с некоторыми «правилами переключения». Например, для сети, изображенной на рис. 9-2, мы можем выбрать следующее правило: переключатель перейдет в состояние ВКЛ на следующем шаге, если по меньшей мере двое из его соседей на этом шаге будут находиться в состоянии ВКЛ; во всех других случаях А остается в состоянии ВЫКЛ.

На рис. 9-3 показаны три последовательности, образовавшиеся по этому правилу. Мы видим, что последовательность А достигает стабильного паттерна, в котором все переключатели находятся в состоянии ВКЛ, через два шага; последовательность В после первого шага колеблется между двумя дополняющими друг друга паттернами; паттерн же С стабилен с самого начала, воспроизводя себя в каждом шаге. Чтобы проанализировать подобные последовательности математически, каждый паттерн, или состояние, сети определяют шестью двоичными (ВКЛ-ВЫКЛ) переменными, т. е. всего двенадцатью переменными. В результате каждого шага система переходит из определенного состояния в определенное последующее состояние, в полном соответствии с правилом переключения.

Паутина жизни. Новое научное понимание живых систем - doc2fb_image_02000033.jpg
Рис. 9-3. Три последовательности состояний в двоичной сети

Как и в системах, описываемых дифференциальными уравнениями, каждое состояние изображается точкой в 12-мерном фазовом пространстве15. По мере того как, шаг за шагом, сеть переходит из одного состояния в другое, последовательность состояний вычерчивает траекторию в этом фазовом пространстве. Для классификации траекторий различных последовательностей применяется концепция аттракторов. Так, в нашем примере, последовательность А, которая движется к стабильному состоянию, связана с точечным аттрактором, тогда как колеблющееся состояние В соответствует периодическому аттрактору.

Кауффман и его коллеги использовали эти двоичные сети для моделирования чрезвычайно сложных систем — химических и биологических сетей с тысячами связанных между собой переменных; такие системы совершенно невозможно описать дифференциальными уравнениями16. Как и в нашем простом примере, последовательность состояний этих сложных систем изображается траекторией в фазовом пространстве. Поскольку число возможных состояний в любой двоичной сети конечно (хотя оно может быть чрезвычайно большим), система должна рано или поздно прийти в то состояние, которое уже встречалось. Когда это произойдет, то следующим шагом система перейдет в то же самое состояние, в которое она переходила и прежде, — поскольку ее поведение полностью детерминировано. Она последовательно повторит тот же цикл состояний. Подобные циклы состояний представляют собой периодические (или циклические) аттракторы двоичной сети. Любая двоичная сеть имеет по крайней мере один аттрактор, но может иметь и больше. Предоставленная самой себе, система в конечном счете закрепится при одном из своих аттракторов и будет в нем оставаться.

Периодические аттракторы, вокруг каждого из которых существует своя область притяжения, — наиболее важные математические характеристики двоичных сетей. Обширные исследования показали, что многие живые системы — включая генетические сети, иммунные системы, нейронные сети, системы органов и экосистемы — могут быть представлены в виде двоичной сети, обладающей несколькими альтернативными аттракторами17.

Различные циклы состояний в двоичной сети могут значительно различаться по длине. В некоторых сетях они бывают исключительно длинными, и длина эта возрастает по экспоненте с ростом числа переключателей. Кауффман определил аттракторы этих исключительно длинных циклов, насчитывающих миллиарды и миллиарды различных состояний, как «хаотические», поскольку их длина практически бесконечна.

Тщательный анализ аттракторов больших двоичных сетей подтвердил то, что кибернетики обнаружили еще в 40-е годы. Некоторые сети хаотичны, поскольку генерируют кажущиеся случайными последовательности и бесконечно длинные аттракторы; другие же генерируют совсем простые аттракторы, соответствующие паттернам высокого порядка.

Таким образом, изучение двоичных сетей дает еще одно представление о феномене самоорганизации. Сети, координирующие совместную деятельность тысяч элементов, могут проявлять высокоупорядоченную динамику.

У границы хаоса

Чтобы установить точную взаимосвязь между порядком и хаосом в этих моделях, Кауффман проверил множество сложных двоичных сетей и разнообразных правил переключения, включая сети, в которых число «входов», или звеньев, различно для разных переключателей. Он обнаружил, что поведение этих сложных паутин можно подытожить, учитывая два параметра: N — число переключателей в сети; К — среднее число входов на каждом переключателе. Для значений К больше 2, то есть в случае множественных взаимосвязей в сети, поведение последней хаотично, но по мере того, как К уменьшается и приближается к 2, устанавливается порядок. Порядок может возникнуть и при более высоких значениях К, если правила переключения «смещены» — например, если ВКЛ преобладает над ВЫКЛ.

Подробные исследования перехода от хаоса к порядку показали, что по мере того, как К приближается к 2, двоичные цепи развивают «замороженное ядро» элементов. Это те звенья, которые остаются в одной и той же позиции, ВКЛ или ВЫКЛ, пока система проходит весь цикл состояний. При еще большем приближении К к 2, замороженное ядро создает «стены постоянства», которые вырастают по всей системе, разделяя сеть на отдельные островки меняющихся элементов. Эти островки функционально изолированы. Изменения в поведении одного острова не могут быть переданы сквозь замороженное ядро на другие острова. Если значение К продолжает падать, острова тоже замерзают; периодический аттрактор превращается в точечный, и вся сеть достигает устойчивого, замороженного паттерна.

49
{"b":"251756","o":1}