П. Согласен.
О. Предположим, цивилизация X и цивилизация Y пытаются установить контакт. Можно вычислить потребную мощность…
Здесь мы прервем спор. Нам не хватит ряда понятий для его понимания. Мы с ними познакомимся и к спору вернемся снова.
Зарубки на волне
«Я, электромагнитная волна, имею такие-то частоту, амплитуду и фазу. Источник, меня пославший, находится в таком-то направлении. Какой это источник естественный или искусственный — и зачем он меня послал, мне знать не дано…»
Вот та скудная информация, которую может сообщить в точке приема радиоволна в виде синусоидального колебания при самом пристрастном ее допросе.
Заметим в скобках, что волна по скромности кое-что утаила.
Так, наблюдая изменения частоты во времени, можно установить, движется или покоится пославший ее источник. Если движется, то куда — к нам или от нас?
Далее, наблюдая электромагнитную структуру приходящей волны (или плоскость ее поляризации), можно сделать некоторое заключение о характере излучающего устройства.
И наконец, изменение амплитуды, частоты и фазы волны во времени укажут на какие-то изменения, происходящие либо в самом источнике, либо в среде.
Как заставить волну переносить более богатую информацию? Как заставить ее переносить разумные сигналы — телеграфные, телефонные, телевизионные? Для этого на волне нужно сделать некие пометки или зарубки. Первым таким «дровосеком» был А. С. Попов. Родоначальница всех телеграмм («Генрих Герц») была нанесена на волну с помощью самых грубых зарубок. Текст был передан с помощью азбуки Морзе. Точкам и тире соответствовало излучение волны, паузам отсутствие излучения.
Перейдем к более сложному сигналу. Вы говорите в микрофон и изменяете тем самым сопротивление угольного порошка, а значит, и величину тока в его цепи. Так речь преобразуется в электрический сигнал причудливой формы. Перенесем этот сигнал на волну. Для этого на ней надо «вырубить» в точности весь его узор.
Для такого же переноса телевизионного сигнала потребуется еще более умелый плотник. Кроме переноса сложного ажурного сигнала изображения, нужно еще ухитриться врубить в волну через равные промежутки времени импульсы синхронизации. Без них луч не начертит правильно передаваемую картинку.
Итак, чем сложней сигнал или чем больше он насыщен информацией, тем более искусно надо делать «зарубки».
Но за это сочное русское слово, от которого буквально пахнет лесом и смолой, автору влетит! Последнее время стало модным объявлять себя ревнителем единой, согласованной, утвержденной, гостированной… терминологии. Поэтому будем не рубить волну, а модулировать (изменять).
На приведенном рисунке модулируется амплитуда волны, и метод называется амплитудной модуляцией. Если в соответствии с передаваемым сигналом менять частоту волны, то получим частотную модуляцию, при этом амплитуда волны остается неизменной.
Мы уже установили, что любое колебание, любая волна имеют два изображения — временнóе и частотное. Это напоминает две стороны одной медали.
На предыдущих рисунках показано изменение формы волны во времени при ее модуляции. А что же при этом происходит на второй стороне медали?
О, частотное изображение волны при модуляции существенно портится! Изображение теряет стройность: из идеала стройности оно превращается в толстяка. И чем большую информацию мы передаем в секунду, тем больше обрастает фигура жиром.
Кстати, синусоидальная волна (или колебание) — предел стройности. Она занимает на шкале частот предельно скромное и предельно экономное место. Если никаких изменений (или модуляции) амплитуды, частоты и фазы во времени не происходит, то теоретически такое колебание должно выглядеть бесконечно тонкой линией на шкале частот. За это его физики любовно называют гармоническим. Но фактически всегда имеются какие-то флюктуации этих параметров, и эта линия выглядит несколько размытой.
Как только мы начнем делать зарубки, простите, модулировать волну, так она начинает агрессию на соседние частотные делянки. Так и должно быть. Ведь сложные модулированные колебания являются не чем иным, как суммой ряда гармонических колебаний с разными частотами, амплитудами и фазами. Эти колебания являются обязательными спутниками несущей частоты или переносчика. Спутники появляются, как только появляется модуляция. Вот они и совершают агрессию.
Любопытно, что эту истину доказал французский математик Жан Фурье задолго до открытия радиоволн. Более того, он разработал простой математический аппарат — знаменитый ряд Фурье, — с помощью которого можно любое модулированное колебание разложить на сумму гармонических. Из этого разложения сразу следует, какой частотный участок будет захвачен при модуляции.
Я не знаю, что делали бы диссертанты и докторанты, если бы не спасительное открытие Жана Фурье. Без преувеличения можно сказать, что почти ни одна диссертация в области технических наук не обходится без его метода: сложные колебания и функции разлагаются на простые, трудные интегралы расчленяют на доступные и т. д.
Совет «попробуйте разложить в ряд Фурье» стал универсальным щитом консультантов, когда нет возможности или желания вникнуть в суть неполучающейся задачи аспиранта.
Итак, чем большую информацию мы хотим взвалить на волну, тем больший частотный коридор надо отвести этой волне. И тем большую полосу частот должен охватывать приемник для приема этой информации.
Или, как образно говорят практики, чем больше информации передается в единицу времени, тем шире должно быть «горло» приемника. А чем шире горло, тем, конечно, и больше всяких помех в него проникает.
Но нам пора от сигналов переходить к системе связи, то есть к совокупности элементов, позволяющих передать информацию из одной точки пространства в другую. В природе и технике мы сталкиваемся с великим разнообразием систем связи.
Казалось бы, что общего между передачей телевидения, танцем пчелы, сообщающей этим способом, куда лететь на сбор меда, импульсами радиолокатора и прерывистым излучением пахучего вещества бабочкой, служащего для привлечения зрелых особей противоположного пола?
Немного отвлекаясь, заметим, что «пробивная сила и дальнобойность» этих нежных ароматических систем связи просто поражает. Зарегистрирован случай, когда за одну ночь возле единственной самки большого ночного павлиньего глаза было поймано 125 самцов. Самка находилась в темной комнате. Самцы по запаху слетались со всей округи и через открытое окно проникали к ней. После того как окна закрыли, кавалеры продолжали проникать через дымоход старой печки.
И меж тем передача информации во всех названных системах связи происходит по одним и тем же общим законам.
Впервые единство процессов управления и передачи информации в технике и в живых организмах было показано в работах Норберта Винера и Клода Шеннона.
Сейчас это почти общеизвестно. А при первом чтении их работ буквально дух захватывало от неожиданно нового и широкого взгляда. Смело перебрасывался мост между техникой и живой природой. И надо было идти по нему в природу и учиться у нее, как хранить, передавать и принимать информацию, как строить адаптивные системы, легко приспосабливающиеся к меняющимся условиям. Это «хождение в природу» наблюдается и сейчас.