Литмир - Электронная Библиотека
A
A

Таким образом, если мы возьмем номинальную APR 6% годовых и уровень инфляции 4Ж, (с учетом непрерывного начисления), то реальная ставка будет точно равна 1% годовых, начисляемых непрерывно.

4.10.1. Инфляция и будущая стоимость

С точки зрения финансового планирования знание реальной процентной ставки дает большое преимущество. Объясняется это тем, что, в конечном счете, именно последняя обусловливает то, что вы сможете купить на свои сбережения в обозримом будущем. Вернемся к нашему конкретному примеру, в котором вы в возрасте 20 лет положили на счет 100 долл. с тем, чтобы снять их со счета не раньше, чем вам исполнится 65 лет. Что мы действительно хотели бы знать, так это то, сколько денег (с точки зрения реальной покупательной способности) у вас будет к тому времени, когда вам исполнится 65 лет. Есть два способа расчета необходимых нам данных — простой и сложный. Первый заключается в том, чтобы рассчитать будущую стоимость 100 долл., используя реальную процентную ставку в размере 2,857% годовых на протяжении 45 лет. Мы определим искомую нами величину как реальную будущую стоимость (real future value).

Реальная будущая стоимость =100 долл.х1,0285745 = 355 долл.

В качестве альтернативы мы можем прийти к тому же результату поэтапно. Сначала мы рассчитываем номинальную будущую стоимость (nominal future value), используя номинальную процентную ставку 8% годовых:

Номинальная FV через 45 лет = 100 долл.х 1,0845=3192 долл.

Затем мы вычисляем, во сколько раз вырастут цены через 45 лет, если уровень инфляции составит 5% в год:

Уровень цен через 45 лет = 1,0545 = 8,985

И наконец, делим номинальную будущую стоимость на будущий уровень, чтобы найти реальную будущую стоимость:

Реальная FV=

Номинальная будущая стоимость

=

3192 долл.

= 355 долл.

Будущий уровень цен

8,985

Конечный результат тот же самый. Мы выяснили, что если положить 100 долл. на счет в банке сегодня (в возрасте 20 лет) и не снимать их со счета на протяжении 45 лет, то, в соответствии с нашими предположениями, в возрасте 65 лет полученных денег хватит для того, чтобы купить товаров на сумму 355 долл. по сегодняшним ценам.

Итак, существует два способа вычисления реальной будущей стоимости (355 долл.).

1. Расчет будущей стоимости на основе реальной процентной ставки.

2. Расчет номинальной будущей стоимости с использованием номинальной ставки и последующей переоценкой ее с учетом инфляции с целью найти реальную будущую стоимость.

Какой из этих двух равноценных методов вам подойдет, зависит от конкретной ситуации.

4.10.2. Сбережения на учебу в колледже: вариант 1

Вашей дочери 10 лет, и вы планируете открыть счет для того, чтобы обеспечить оплату ее образования в колледже. Плата за год обучения в колледже сейчас составляет 15000 долл. и ожидается ее увеличение на 5% в год. Если вы положите 8000 долл. на банковский счет по ставке 8% годовых, будет ли у вас через восемь лет достаточно денег для того, чтобы заплатить за первый год обучения? Если вы подсчитаете будущую стоимость 8000 долл. (при ставке 8% годовых) через восемь лет, то получите следующий результат:

FV через 8 лет = 8000 долл. х 1,088 = 14807 долл.

Поскольку 14807 долл. — сумма очень близкая к 15000 долл., может показаться, что достаточно вложить сейчас 8000 долл. для того, чтобы заплатить за первый год обучения в колледже. Но плата за обучение представляет собой своего рода постоянно удаляющуюся цель. Плата за обучение в прошлом увеличивалась, как минимум, на общий уровень инфляции. Например, если инфляция поднимется до уровня 5% в год, то стоимость первого года обучения в колледже будет 15000 долл. х 1,058, или 22162 долл. Таким образом, ваших 14807 долл. хватит только на то, чтобы покрыть две трети необходимой суммы.

4.10.3. Инвестирование в депозитные сертификаты, защищенные от инфляции

Собираясь инвестировать 10000 долл. сроком на год, вы стоите перед выбором: купить обычный депозитный сертификат со сроком погашения через один год и с процентной ставкой 8% годовых или депозитный сертификат, процентная ставка по которому образуется путем добавления к 3% годовых уровня инфляции за год. Первый из финансовых инструментов мы назовем номинальным депозитным сертификатом, a второй — реальным депозитным сертификатом. Какой из них вы выберете?

Ваш выбор зависит от прогнозов уровня инфляции на следующий год. Если вы уверены, что уровень инфляции превысит 5% в год, вы предпочтете реальный депозитный сертификат. Предположим, вы думаете, что уровень инфляции будет 6%. Тогда ваша номинальная процентная ставка по реальному депозитному сертификату будет 9%. Если, однако, вы уверены, что инфляция составит 4% годовых, то номинальная процентная ставка по реальному депозитному сертификату составит только 7%. Поэтому вам лучше приобрести номинальный депозитный сертификат.

Конечно, так как вы не можете совершенно точно знать, какого уровня достигнет инфляция, принятие решения усложняется. Мы вернемся к этой проблеме позже, когда будем рассматривать вопрос учета неопределенности при принятии решений об инвестировании.

4.10.4. Почему должники остаются в выигрыше от непредвиденной инфляции

Предположим, вы заняли 1000 долл. под 8% годовых и через год должны выплатить как основную сумму долга, так и проценты по нему. Если уровень инфляции установится на уровне 8% в год, то реальная процентная ставка по займу равняется нулю. Хотя вы и должны вернуть 1080 долл.,, реальная стоимость этой суммы будет всего 1000 долл. Проценты в размере 80 долл. всего лишь компенсируют снижение покупательной способности долга в 1000 долл. Другими словами, вы выплачиваете долг "подешевевшими" долларами, Нет ничего удивительного в том, что когда процентная ставка по займу установлена заранее, дебиторы рады непредвиденной инфляции, а кредиторы нет.

4.10.5. Инфляция и приведенная стоимость

Во многих финансовых задачах, где рассчитывается приведенная стоимость, будущая сумма не фиксируется. Предположим, вы планируете купить машину через четыре года и хотите сейчас отложить достаточно денег для того, чтобы заплатить за нее. Машина, о покупке которой вы подумываете, стоит, скажем, 10000 долл., а процентная ставка, под которую вы можете поместить свои деньги в банк, составляет 8% годовых.

Пытаясь рассчитать, какую сумму вам необходимо вложить сейчас, вполне естественно следующим образом рассчитывать приведенную стоимость 10000 долл., которые будут получены через четыре года при ставке 8%:

PV=10000 долл./1,084-7350 долл.

Вы вполне можете прийти к заключению, что сейчас достаточно вложить в банк 7350 долл., чтобы этих денег хватило заплатить через четыре года за машину.

Но это было бы ошибкой. Если машина, которую вы хотите купить, стоит сейчас 10000 долл., почти наверняка через четыре года она будет стоить больше. Насколько больше? Это зависит от уровня инфляции. Если цены на машины растут на 5% в год, то через четыре года машина будет стоить долл.10000 х 1,054, или 12155 долл.

Есть два равнозначных способа учета инфляции для таких ситуаций. Первый способ заключается в том, чтобы рассчитать приведенную стоимость, используя реальную дисконтную ставку. Как мы видели ранее, реальная дисконтная ставка определяется следующим образом:

56
{"b":"248146","o":1}