PV=
100 долл.
=68,06
1.085
Сравнив 68,06 долл. с 75 долл., необходимыми для покупки облигации, мы можем заключить, что покупать ее не стоит. Другими словами, NPV инвестиции, 68,06 долл.-75 долл. =-6,94 долл., т.е. она отрицательна.
Проявляется критерием того, насколько сильно изменяется ваше текущее финансовое состояние в результате сделанного выбора. Понятно, что если NPV отрицательна, деньги вкладывать не стоит. В данном случае, если вы примете решение о покупке данной облигации, то ваше текущее богатство ухудшится приблизительно на 7 долл.
Для того чтобы прийти к тому же самому заключению, можно использовать другой способ, известный под названием правила будущей стоимости. Оно гласит; Вкладывайте деньги в проект, если его будущая стоимость больше будущей стоимости, которую вы получите в ходе реализации другого варианта инвестирования средств. Это правило не так очевидно, как рассмотренное ранее, хотя и приводит к тому же решению, что и правило ЛУК Причина, по которой это правило не часто используется на практике, заключается в том, что при многих обстоятельствах (как будет показано далее в книге) будущую стоимость инвестиций нельзя рассчитать, в то время как правило NPV применить можно. Давайте теперь посмотрим, как правило будущей стоимости использовалось бы в том же самом примере, с помощью которого мы проиллюстрировали правило NPV.
Покупка облигации (первоначальная инвестиция 75 долл., будущая стоимость денежных поступлений через пять лет — 100 долл.) ведет к получению в будущем денег в количестве 100 долл. Следующим лучшим вариантом вложения денег может считаться их помещение на банковский счет под 8% годовых. Действительно ли облигация имеет более высокую будущую стоимость, чем мы могли бы получить в банке? И снова, пользуясь имеющимися у нас данными, заполним таблицу:
n
i
PV
FV
Результат
5
8
75
?
FV=110,20
Воспользовавшись формулой, мы получим, что будущая стоимость денег на банковском счете составит:
FV = 75 долл. х 1,085 = 110,20 долл.
Совершенно очевидно, что эта сумма значительно выше, чем 100 будущих долларов, получаемых при погашении сберегательной облигации. И вновь мы приходим к выводу, что сберегательная облигация является худшим вариантом инвестирования.
Существуют другие правила принятия решений, которые также используются на практике, У каждого из них имеются свои собственные основания для применения и каждое служит для решения конкретных проблем. Стоит отметить, однако, что ни одно из правил не имеет такого универсального применения, как правило NPV.
Вот еще одно широко используемое правило, которое во многих случаях может быть эквивалентом правила NPV: "Принимайте положительное решение об инвестировании, если доходность проекта выше, чем альтернативная стоимость капитала".
Это правило опирается на сравнение имеющихся ставок доходности. Вспомните, что в нашем примере альтернативная стоимость капитала от помещения денег в банк составила 8% годовых. Если вы вложите 75 долл. в сберегательную облигацию сегодня, то через пять лет сможете получить 100 долл. Какова будет процентная ставка по ваше» вкладу? Другими словами, мы хотим найти i для того, чтобы решить уравнение:
75 долл. = 100 долл./(1 + i)5
Показатель, которой мы нашли, называется ставкой доходности при погашении облигации (yield to maturity), или внутренней ставкой доходности (internal rate of return, IRR/ Внутренняя ставка доходности — это такое значение дисконтной ставки, которое уравнивает приведенную стоимость будущих поступлений и приведенную стоимость затрат. Другими словами, IRR равна процентной ставке, при которой NPV равна нулю. Таким образом, если ставка, при которой NPV равен нулю (т.е. IRR) выше, чем альтернативная стоимость капитала, тогда нам понятно, что NPV при альтернативной стоимости капитала должна быть положительной. Другими словами, если IRR составляет, скажем, 10% (т.е. NPV npи 10% равняется нулю), тогда ЛУК при альтернативной стоимости капитала 8% должна быть положительной. Почему? Мы знаем, что расчет NPV учитывает будущие поступления. Мы также знаем, что приведенная стоимость будущих денежных потоков больше, когда дисконтная ставка невелика. Таким образом, если NPV равняется нулю при 10%, то она будет положительной при 8%. Отсюда наличие 10% IRR и 8% альтернативной стоимости капитала позволяют нам говорить о том, что NPV должна быть положительной1.
Для того чтобы рассчитать i на финансовом калькуляторе, введите PV, FV, и и подсчитайте i.
N
I
PV
FV
Результат
5
?
-75
100
i=5,92%
Мы поставили знак "минус" перед 75 долл. в столбце таблицы, обозначенном PV, так как таким образом обозначают инвестицию (а именно исходящий от вас денежный поток). В большинстве финансовых калькуляторов сумма первоначальной инвестиции вводится со знаком "минус". В этом нет ничего удивительного, так как в программе калькулятора заложена необходимость первоначальных расходов (вводимых со знаком "-") для того, чтобы получить обратный положительный денежный поток в будущем. Если бы все денежные потоки наличности были положительными, мы могли бы создать машину для производства денег, а это, к сожалению, невозможно.
Если у вас нет финансового калькулятора, вы можете найти значение (", используя свои знания алгебры:
100=75 х i(l+i)5
(1+i) 5 =100/75
i =(100/75)1/5 – 1 = 5,92%
Таким образом, доходность облигации при ее погашении (IRR) составляет 5,92% в год. Этот результат можно сравнить с 8%, которые вы могли бы получить, если бы поместили деньги в банк. Совершенно понятно, что выгоднее класть деньги в банк.
Правило принятия решений на основе внутренней ставки доходности эквивалентно правилу NPV в том, что касается оценки одноразовой инвестиции, которая не предполагает больше дополнительных вложений, т.е. отрицательных будущих денежных потоков. Но даже и при этом условии данное правило не позволяет проранжировать по степени выгодности потенциальные инвестиционные возможности. В целом это правило можно сформулировать следующим образом: "Когда вам приходится выбирать среди нескольких альтернативных инвестиционных возможностей, выбирайте ту, у которой показатель NPV наивысший".
В примере, который мы решали с помощью нашего финансового калькулятора, есть еще одна переменная: я (количество лет). Давайте рассчитаем эту величину для сберегательной облигации. Мы знаем, что FV равна 100 долл., PV— 75 долл., альтернативная стоимость капитала 8%. Чему же тогда равняется n?
75 долл. =100 долл./1,08n
На финансовом калькуляторе мы вводим PV, FV, i и рассчитываем и:
п
1
PV
FV
Результат
i
S
-75
100
n = 3,74
Мы нашли, что п равняется 3,74 года. Как можно интерпретировать полученный результат? Это значит, что если мы положим деньги в банк (под 8% годовых), понадобится 3,74 года для того, чтобы 75 долл. выросли до 100 долл. Это наблюдение подводит нас к следующему правилу: "Выбирайте вариант инвестирования с кратчайшим периодом окупаемости вложений".