Можно устроить пятно из кусков черной ткани; покрывающих частично длинные цилиндры на фоне белой поверхности почвы, одновременно вращаемые электромоторами. Я не могу сказать, сколько будут стоить четыре квадратных мили ткани. По этому вопрос Вы должны обратиться к текстильным трестам или людям, которые сочиняют детские учебники арифметики. Может быть, мы получим ответ, ибо надо думать, что марсиане старше и поэтому умнее, чем мы. Я, лично, никогда не уделял и не собираюсь уделять внимание проблемам сигнализации на Марсе».
Мне кажется, нечего добавлять больше, чтобы оправдать употребленный эпитет «сенсационный». Не стоит обвинять профессора Вуда в любви к шумной сенсации. Он совершил несколько остроумных и огромных мистификаций, но только в виде шутки. В области серьезной науки он сторонник «ортодоксальной», почти ультраконсервативной точки зрения. Он никогда не верил всяческим фантастическим и громким теориям и предсказаниям. И конечно, он никогда не требовал «признания» своего ртутного телескопа. Он просто изобрел его, и все тут…
Что касается моего второго эпитета «бесполезный»…, то, в настоящее время, ртутный телескоп уже не существует ни у Вуда, ни где-либо еще. Когда Луна поднимается над коровником, не блестит ртуть, и никто не смотрит в зеркало. Попросту говоря, оказалось, что с телескопом нельзя было работать. Я долго не мог понять одной вещи — каким удивительным способом можно направить дыру в земле на определенную звезду или планету. Вуд сказал, что я удивлялся вполне справедливо и что впоследствии он установил над колодцем двадцатидюймовое плоское зеркало из посеребренного стекла, и с помощью него наблюдал объекты, удаленные от зенита на большие углы. Не знаю, очень ли это помогло.
Теперь остается досказать, что все же ртутный телескоп был одной из значительных работ Вуда. Метод вращения зеркала с помощью независимого кольцевого ротора был вскоре применен им ко всем делительным приспособлениям машин, наносящих штрихи дифракционных решеток, и ошибки в расстояниях между отдельными линиями сразу же исчезли. С тех пор это стало важным и общепринятым техническим методом. Так, несмотря на бесполезность основной идеи, вся работа получила техническое значение и является хорошим примером того, как настоящий ученый берется за проблему — приведет ли она к практическим результатам или нет — и разрешает ее, разлагая на составные задачи, которыми и пользуется в отдельности. Собственное техническое описание Вуда (написанное в то время и сохранившееся среди его научных статей), охватывающее и теоретические основы работы, и технику конструирования аппарата, является ясным, скромным отчетом о том, как человек обходит трудности — осуществляя ртутный телескоп или разрешая научную проблему.
Перед «закатом» ртутного телескопа в блюде со ртутью отразилось не звездное небо, а сельская философия американца. Это было во время Брайен-Тафтовской избирательной кампании, и старый фермер из Ист Хэмптона, посмотрев на мириады звезд, отраженных ртутным телескопом, вздохнул и сказал: «Не знаю, много ли в конце концов разницы, кого из них выберут, Брайена или Тафта».
Размышления старика были глубоки, но оригинальны ли они? Или люди так думали еще во времена Пифагора?
В то время как ртутный телескоп, вслед за теленком, погружался в забвение, Вуд уже был занят постройкой — в этом же самом уникальном сарае — лаборатории в Ист Хэмптоне — нового гигантского спектроскопа, или, скорее, спектроскопической камеры, которая относилась к совсем другой категории его творений. Это был, и оставался много лет, величайший и лучший инструмент своего рода во всем мире, и, кроме того, что он дал кошке Вуда такую же бессмертную славу, какую имеет попугай Архимеда, он сделал эпоху в области спектрального анализа и теории спектров. Он впервые разрешил сложнейший спектр йода, в котором насчитывается сорок тысяч линий.
Но так как при рассказе об этом, говорят ли вам в Токио, или здесь, или в Сингапуре, все равно упоминают о кошке, то я считаю неизбежным последовать этому установившемуся обычаю.
История эта имеет много версий. Года два назад за нее взялась «Тайм», и рассказ стал чем-то вроде серии кошачьих приключений в руках ловких писак из газет, которые изобразили кошку ассистентом чародея, аккуратно проделывающим свой номер, когда Вуд позовет ее «Кис, кис, поди сюда и очисти спектроскоп от паутины!» Вариантов так много, что не знаю, в состояний ли сам Вуд рассказать историю вполне правдиво. То, что произошло в действительности, можно рассказать просто и коротко. Спектроскоп состоял из длинной деревянной трубы, в целых сорок два фута, и примерно шести дюймов диаметром, торчавшей из стены сарая на железных подставках; в одном конце ее находилась дифракционная решетка, а на другом — щель и зеркало. За первую зиму и весну после постройки в нее забрались пауки и сплели свою паутину. Когда Вуд возвратился в июне, он заметил дерзкое вторжение. Он схватил кошку и засунул ее — не без сопротивления с ее стороны — в один конец трубы, а затем закрыл его. Кошка, не имея других перспектив, доползла по туннелю к свету и выскочила из другого конца, волоча за собой целый шлейф из паутины, после чего в ужасе бросилась через забор от столь страшного места. Профессор совсем не ожидал, что это событие ждет всемирная известность, но вскользь упомянул о нем в статье, посланной в Philosophical Magazine. Это был просто скорый, эффективный и бесплатный способ добиться желаемого результата первым подручным средством.
Спектроскопическая камера была чудом научной и практической изобретательности. Друзья, коллеги-ученые, любопытные и журналисты стали опять стекаться к теперь уже знаменитому сараю. Есть много статей — в том числе сугубо научные, — описывающих то, что происходило в Ист Хэмптоне в 1912 году. Мне больше всего нравится описание, появившееся в Бруклинском «Дейли Игл» в воскресенье 1 сентября 1912 года, где автор говорит:
«Проходя по дороге, вы никогда не подумаете, что в строении может находиться кто-либо кроме домашних животных — до того момента, когда профессор распахивает огромные двери и показывает вам содержимое.
Новый спектроскоп, который профессор целиком самостоятельно построил, настолько прост, что несведущий неспособен понять, как при помощи него можно добиться столь поразительных результатов. Он состоит из длинной деревянной трубы, длиной в сорок два фута, в один из концов которой вставлена ахроматическая линза диаметром в шесть дюймов, с фокусным расстоянием в сорок два фута, т. е. во всю длину трубы. Перед линзой, с этого же конца, находится дифракционная решетка, разлагающая свет на составляющие лучи. Эта решетка — полированная металлическая пластина с рисками, прочерченными алмазным резцом, по 15000 на дюйм, т. е. 75000 линий по всей поверхности (квадрат со стороной в 5 дюймов). Решетка вращается вокруг вертикальной оси при помощи стержня с червячной передачей, так что профессор может изучать любую желаемую часть спектра. Инструмент дает столь широкий спектр, что одновременно можно рассматривать только очень малую часть его. Линии на полированной пластинке действуют подобно призме, разлагая свет на компоненты. На другом конце трубы, которая оканчивается в темной комнате, находится небольшая щель, а за ней зеркало, на которое попадает солнечней свет с помощью другого зеркала и линзы. Этот рефлектор и линза работают как гелиостат, вращаемые часовым механизмом вслед за солнцем, так что отраженный свет всегда попадает на второе зеркало в темной трубе, которое, в свою очередь, всегда отражает его сквозь щель на ахроматическую линзу и дифракционную решетку. Когда свет разлагается решеткой и проходит по трубе обратно, он слегка отклоняется кверху, так что на фотопластинке, помещенной как раз над щелью, получается снимок той части спектра, с которой работает профессор. Поразительная разрешающая способность этого инструмента определяет его превосходство над другими спектроскопами. Вот, например, сказал профессор, маленький лабораторный спектроскоп показывает известную желтую линию натрия, как одну сплошную линию, а в новый инструмент та же линия видна как две отдельных, разделенных расстоянием в 5 дюймов.