Сравним, однако, развитие квантовой теории с другими, более ранними революциями в истории физики. Спросим, например, как возникла теория относительности. Отправной точкой здесь была электродинамика движущихся тел. Поскольку герцевские волны считались колебаниями гипотетической среды, эфира, поскольку, иными словами, их следовало рассматривать в системе ньютоновских понятий, неизбежно возникал вопрос, что произойдет в эксперименте с телами, движущимися относительно эфира. Было выдвинуто необозримое количество проектов, уже в силу одной только сложности казавшихся ложными. Разумеется, очень заманчиво поразмышлять здесь о том, когда предложенная формула заранее кажется ложной, а когда нет, но я воздержусь от этого. Напомню лучше, что понятие «движение относительного эфира» уже в то время казалось многим физикам подозрительным, потому что ни разу еще не удавалось наблюдать эфир. Физики чувствовали себя заблудившимися в чаще леса и были поэтому рады, когда знаменитые майкельсоновские эксперименты позволили исследовать движение Земли относительно эфира. Результатом, как известно, было то, что и тут никакого эфира не обнаружилось. Как следствие среди физиков распространился общий скептицизм по отношению к понятию эфира и всех связанных с ним расчетов. Однако и после этого не появилось такой группы физиков, которая била бы тревогу и возвещала крушение физики. Напротив, решение старались найти в рамках существовавшей физики, внося в нее наивозможно малые изменения. Поэтому Лоренц предложил ввести для движущихся систем отсчета кажущееся время, связанное с временем, измеренным в покоящейся системе отсчета с помощью знаменитых преобразований Лоренца, и допустить, что это кажущееся время определяет разность хода световых лучей. И только после этого Эйнштейн заметил, что картина бесконечно упрощается, если в преобразовании Лоренца отождествить кажущееся время с действительным. Но тем самым Лоренцовы преобразования приобретали характер высказывания о структуре пространства и времени, и если это высказывание считать правильным, слова «пространство» и «время» означали уже нечто иное, чем в ньютоновской физике. Понятие одновременности было релятивизировано, и структура нашего физического мышления, в основания которого непременно входят понятия «пространство» и «время», изменилась. Эта революция также натолкнулась впоследствии на сильное сопротивление, вызвавшее бесчисленные дискуссии о теории относительности. Но сейчас мне важно лишь подчеркнуть, что и эта революция в физике произошла отнюдь не потому, что некто вознамерился разрушить или радикально перестроить здание классической физики.
Сделаем еще шаг назад в этой истории и вернемся к максвелловской теории и статистическому учению о теплоте. Сегодня нам трудно осознать, что речь уже и тогда шла о глубинных изменениях в структуре физического мышления. Но в наши дни вряд ли можно говорить об этих изменениях независимо от позднейших изменений в теории относительности и квантовой теории. Введенное Фарадеем и Максвеллом понятие поля было, так сказать, первым шагом к тому, чтобы, отбросив впоследствии представление об эфире, понять поле как самостоятельную физическую реальность; а в той форме, которую учение о теплоте приняло у Гиббса, было уже предвосхищено понятие условий наблюдения, сыгравшее столь важную — роль в квантовой теории. Помимо всего прочего, пожалуй, самым ярким свидетельством того, что речь здесь шла о существенных изменениях в структуре физического мышления, может служить опять-таки то сопротивление, на которое длительное время наталкивались эти теории. Впрочем, мы коснемся этой стороны проблемы позже. В обоих этих случаях также справедливо то, что было сказано ранее по поводу теории относительности и квантовой теории: ни один физик ни на каком этапе развития не думал о крушении существующей физики. Напротив, долгое время сохранялась надежда на то, что новые феномены удастся понять в рамках ньютоновской физики, и только потом обнаружилось, что сдвиг произошел в самих основах физики.
А теперь несколько слов о том упорном сопротивлении, с которым сталкивалось всякое изменение в структуре мышления. Работающий в науке человек знакомится на протяжении своей жизни с новыми явлениями или с новыми интерпретациями явлений, а может быть, даже и сам находит их. К этому привыкаешь, и ученый всегда готов наполнить свою мысль новым содержанием. Для него, стало быть, вовсе не характерно консервативное — в обычном смысле слова — стремление держаться только издавна привычных образцов. Поэтому прогресс в науке обходится, как правило, без сопротивления и пререканий. Дело, однако, оборачивается иначе, когда новая группа явлений заставляет произвести изменения в структуре мышления. Здесь даже наиболее выдающиеся физики испытывают величайшие затруднения, ибо требование изменить структуру мышления вызывает такое ощущение, будто почва уходит из-под ног. Ученый, которому усвоенная с юности структура мышления позволяла затем на протяжении ряда лет добиваться в своей науке немалых успехов, просто не может перестроить свое мышление на основании нескольких новых экспериментов. Изменение сознания, открывающее путь к новому образу мышления, может произойти в лучшем случае после многолетнего продумывания новой ситуации. Мне представляется, что серьезность возникающих здесь трудностей невозможно переоценить. Напротив, когда ощутишь всю глубину отчаяния, с которым умные и доброжелательные люди науки реагируют на требование изменить структуру мышления, приходится, собственно, только удивляться тому, что революции в науке вообще оказались возможны.
Но как же в таком случае они произошли? Тут напрашивается ближайший, но, по всей видимости, еще неудовлетворительный ответ: они произошли потому, что в науке существует «правильное» и «ложное», и новые представления оказались правильными, а старые — ложными. Говоря так, мы подразумеваем, что в науке всегда торжествует правильное. Однако это вовсе не так. Например, выдвинутое Аристархом правильное представление о гелиоцентрическом строении планетной системы было отвергнуто в пользу геоцентрической модели Птолемея, хотя она и была ложной. Разумеется, еще неудачнее было бы другое объяснение успеха революций: они одерживают победу, поскольку физики охотно признают авторитет сильной революционной личности, например Эйнштейна. Об этом, конечно же, не может быть и речи, поскольку внутреннее сопротивление изменению структуры мышления слишком сильно, чтобы его мог одолеть авторитет одиночки. Пожалуй, правильное объяснение таково: научные деятели понимают, что новая структура мышления позволяет добиться в науке большего, чем старая, то есть новое оказывается более плодотворным. Ибо тот, кто однажды решил стать ученым, прежде всего стремится двигаться вперед, он хочет участвовать в открытии новых путей. Он не довольствуется повторением старого, не раз уже сказанного. Вот почему он интересуется такими проблемами, где ему, так сказать, «есть, чем заняться», где перед ним открывается перспектива успешной деятельности. Именно поэтому одержали победу теория относительности и квантовая теория. Конечно, место высшей инстанции занимает тем самым критерий прагматической ценности, и поэтому нельзя быть абсолютно уверенным в том, что всегда одерживает верх правильное. Знаменитым контрпримером служит опять-таки птолемеевская астрономия. Но по крайней мере здесь действуют силы, способные одолеть внутреннее сопротивление изменению структуры мышления.
От конечной стадии революции в науке обратимся теперь еще раз к ее начальной стадии. Приведенные мною примеры, думается, убеждают в том, что в истории никогда не существовало стремления радикально перестроить здание физики. Наоборот, все всегда начинается с весьма специальной, узко ограниченной проблемы, не находящей решения в традиционных рамках. Революцию делают ученые, которые пытаются действительно решить эту специальную проблему, но при этом еще и стремятся вносить как можно меньше изменений в прежнюю науку. Как раз желание изменять как можно меньше и делает очевидным, что к введению нового нас вынуждает предмет, что сами явления, сама природа, а не какие-либо человеческие авторитеты заставляют нас изменить структуру мышления.