Итак, в названии очерка все точно. Попав на твердую поверхность, капля действительно готовит себе удобную постель: либо изгибает подложку, если ей это удается, либо выкапывает для себя удобную ямку.
Раздавленная капля
Аналогия рождается на перекрестках памяти и раздумий и иногда связывает воедино образы и события, состоящие в очень дальнем родстве. Неожиданная аналогия, даже отдаленная или поверхностная, родившись вовремя, может помочь исследователю выйти из тупика и осветить путь к решению.
Когда-то, в конце 40-х годов, я участвовал в экспериментальной работе. Ее цель заключалась в определении физических характеристик вещества, которое ранее не исследовалось. Ранее этого вещества в чистом виде просто не было — ценой больших усилий его получили химики.
На первый взгляд задача совсем не новая, и решать ее следует, двигаясь путями, проторенными многими исследователями, изучавшими физические характеристики других веществ. Наша задача, однако, была усложнена тем, что экспериментировать мы могли лишь с микроскопическими крупинками. Каждая крупинка весила около одной миллионной грамма, а размер ее — несколько десятков микрон. Количеством крупинок мы были очень ограничены — химики их добывали с трудом.
Группа, в которой я работал, должна была определить температуру плавления и поверхностное натяжение вещества в жидкой фазе.
В обычном «макроскопическом» эксперименте температура плавления измеряется легко и просто: в образец погружают термометр и следят за тем, как меняются его показания по мере нагрева образца. Температура постепенно возрастает. Когда она достигнет некоторого значения, ее рост приостановится в связи с тем, что тепло, притекающее к образцу, начнет расходоваться не на нагрев, а на процесс расплавления. Эта температура и является температурой плавления. Когда же масса крупинки — одна миллионная грамма, термометр внедрить в нее невозможно и для определения температуры плавления следует искать обходные пути.
Один из участников нашей группы, у которого за плечами были годы работы в литейном цехе, предложил совсем неожиданное решение задачи. Его память хранила воспоминание, родившее аналогию. В годы войны, сказал он, я вел плавку одновременно в нескольких одинаковых тигельных электропечах. Загружал их алюминиевыми чушками и, чтобы определить начало расплавления шихты в печи, не забираясь на ее загрузочную площадку, в каждую печь между чушками вертикально устанавливал длинный металлический стержень, который был виден над печью. В момент начала плавления стержень наклонялся — это служило сигналом.
Это воспоминание подсказало идею, с помощью которой можно было измерить температуру плавления крупинки. Опыт заключался в следующем. На тщательно отполированной пластинке кварца располагалась крупинка. Сверху ее накрывали другой пластинкой кварца, которая, касаясь крупинки, образовывала некоторый угол с первой пластинкой. Это устройство нагревали, и в тот момент, когда крупинка расплавлялась, верхняя пластинка раздавливала образовавшуюся каплю и угол между пластинками скачкообразно уменьшался. Чтобы надежнее этот момент зарегистрировать, на внешнюю поверхность верх^ ней пластинки нанесли зеркальное покрытие и следили за тем, как отражаемый от нее луч скачком смещается. Пластинка, меняющая свое положение, была подобна металлическому стержню, который наклонялся, свидетельствуя о начале процесса плавления. Так как масса крупинки пренебрежимо мала по сравнению с массой кварцевых пластинок, между которыми она зажата, температура крупинки равна температуре пластинок и, следовательно, измерить ее весьма просто.
В описанном опыте, вопреки известной пословице, нам удалось убить двух зайцев: определить, во-первых, температуру плавления и, во-вторых, величину поверхностного натяжения расплавленного вещества. Дело в том, что верхняя пластинка, раздавливая своей тяжестью каплю, превращала ее в лепешку определенной толщины. Сколько раз ни повторялся бы опыт по расплавлению одной и той же крупинки, образовывавшаяся жидкая капля весом пластинки расплющивалась до одной и той же толщины к . Эту величину можно было уменьшить, увеличивая вес верхней пластинки. Легко понять, что дальнейшему
расплющиванию препятствуют силы поверхностного натяжения, приложенные к той части поверхности расплющенной капли, которая граничит с воздухом. В наших опытах вещество капли практически не смачивало кварц (именно поэтому опыты и ставились с кварцевыми пластинками) и, следовательно, можно считать, что радиус закругления свободной поверхности r= h/2
Величина поверхностного натяжения α может быть определена из условия равенства давления, которое оказывает пластинка на жидкую каплю (Рп), и лапласовского давления (Рл), которое обусловлено искривленностью ее свободной поверхности. Если вес пластинки давит на каплю с силой F, а площадь ее контакта с расплющенной каплей πR2, то Рп = F/πR2. Величина Рл = α/r = 2α/h Приравнивая Рп к Рл, находим формулу, с помощью которой можно определить величину поверхностного натяжения вещества:
α = F.h/2πR2
Величины h и R можно измерить с большой точностью, а силу легко определить, зная вес верхней пластинки.
Способ решения стоящей перед нами задачи, который подсказала возникшая вдруг аналогия, конечно же, был не единственно возможным. Видимо, можно было придумать и иные приемы, но нас привлекла в нем неожиданность аналогии и возможность опровергнуть пословицу о двух зайцах.
ПЕРВАЯ КАПЛЯ ТАЛОЙ ВОДЫ
Что там творится в мире заоконном?
Зима в исходе, видно по всему.
Давайте вместе слушать, как со звоном
Летит сосулька из зимы в весну.
Александр Межиров
Капля, осушенная иглой
Расскажу об одном очень простом опыте, который когда- то в нашей лаборатории был поставлен и заснят на кинопленку. «Героем» фильма, естественно, была капля.
Начну с предыстории, с «общих соображений». Во многих учебниках физики утверждается, что жидкость смачивает твердое тело того же вещества: жидкая медь — твердую медь, вода — лед. Это означает, что если бы, например, на поверхности твердой меди поместить каплю жидкой меди, она должна была бы растечься по ней тонким слоем. Утверждается, что это веществу «выгодно», поскольку при этом его поверхностная энергия уменьшается, т. е. что поверхностная энергия твердой меди на границе с парами меди больше, чем сумма энергий на границе твердая медь — жидкая медь и жидкая медь — пары меди. Разумеется, медь — это лишь пример. Имеется в виду, что утверждение справедливо применительно ко многим веществам.
Если авторы учебников физики не заблуждаются, то смачивание твердого тела жидким должно проявлять себя во многих явлениях. Ведь это означает выгодность наличия жидкой пленки на поверхности твердого тела. Чуть курьезно об этом можно сказать так: твердым телам выгодно быть мокрыми. Но окружающие нас твердые предметы сухи, если, разумеется, мы их специально не смочим. Впрочем, и смочить их не просто, так как смачивать надо жидкостью того же вещества, что и твердое тело, а такая жидкая пленка на твердом теле быстро кристаллизуется и, присоединившись к нему, становится твердой.