Физиологические и анатомические данные дают основание утверждать, что для каждого из основных ощущений имеются, по-видимому, свои специальные рецепторы (или участки рецептивных полей), свои каналы передачи информации и свои участки проекции в сенсорных поля. Так, например, для каждого из простых звуковых тонов имеется, по-видимому, резонирующий на него волосок (и нервное волокно) в улитке внутреннего уха. Для каждого основного вида вкусовых ощущений на языке имеются чувствительные лунки, соответствующие определенной форме молекул. Для каждого из основных видов тактильных ощущений на коже и под кожей разбросаны особые специализированные рецепторы, каждый из которых реагирует только на данный вид раздражений (например, только на прикосновение, или только на нагрев, или только на охлаждение и т.д.). Для каждого из основных цветов, по некоторым данным, в сетчатке имеются свои специфические чувствительные элементы («красные», «синие» и «зеленые» колбочки), которые реагируют только на данный цвет. Есть также данные, что и сама информация о цвете передается в мозг по особому каналу (отдельно от информации об освещенности, размере и форме изображения).
Таким образом, на уровне внутримодальных вариаций качественные различия простых ощущений, по-видимому, достигаются тем же способом — путем использования различных датчиков для каждой из этих вариаций. Иначе говоря, дифференцировка и анализ первичных, простых свойств раздражителя в пределах одной модальности осуществляется тоже разнесением информации по разным каналам с помощью механизмов специфической чувствительности. Вторичные же, сложные ощущения синтезируются уже, по-видимому, в мозгу путем объединения простых.
Наконец, четвертую характеристику ощущений можно назвать их чистотой. Под чистотой ощущения мы будем понимать то, насколько отчетливо выделено в нем определенное простое или сложное ощущение.
Например, так называемые ахроматические цвета (предельные, крайние случаи — белый и черный) будут абсолютно «грязными». В них так «перемешаны» все цвета спектра, что зрительный анализатор не может выделить ни одного из них, как преобладающего. Однако, и в хроматических, т.е. цветных, раздражителях, кроме преобладающего цвета всегда подбавлена обычно и смесь всех других цветов, т.е. световых волн с другими частотами. Иными словами, в тех или иных пропорциях подбавлен более или менее светлый серый «цвет». Степень «разбавленности» ощущаемого цветового тона этим «серым шумом» называют насыщенностью цветового тона. Чем больше насыщенность, тем «сочнее» цвет; чем она меньше — тем он водянистее, серее, ближе к белому или черному.
Аналогично, для слуховых ощущений совершенно «грязным» является шум, где так намешаны разные частоты, что невозможно выделить какой-либо определенный звуковой тон. Степень примеси шума к определенному звуковому тону характеризует его чистоту.
Для обонятельных ощущений в качестве «шумов» выступают посторонние запахи, сбивающие основной. Для тактильных — в качестве шума выступают обычно боль и внутренние органические ощущения и т.д.
Между прочим, одной из замечательных особенностей анализаторов выступает их удивительная способность «отстраиваться» от шумов и помех. Так, например, собаке, когда она идет по следу, удается выделять чрезвычайно слабый, почти выветрившийся запах одного определенного человека (или животного) из «забивающего шума» множества других свежих и намного более сильных запахов. Или, например, летучие мыши. Они, как известно, слепы и ориентируются с помощью «звукового локатора», испуская ультразвуки и принимая их эхо — отражение от окружающих предметов. Так вот, есть пещеры, где колонии летучих мышей насчитывают миллионы зверьков. Стоит войти в такую пещеру и поднять шум, как все они взлетают и начинают метаться в абсолютной темноте. При этом они никогда не сталкиваются и не налетают на препятствия. Непостижимо, как в чудовищной «каше» миллионов одновременно звучащих писков и их отражений каждый из зверьков ухитряется выделить и узнать слабенькое эхо именно своего голоса!
Для современной техники достигнуть такого — еще неразрешимая задача. По-видимому, здесь работают те же механизмы специфической чувствительности, доведенные до высшего предела совершенства. Отыскание их секрета позволило бы создать приемники в миллионы раз более эффективные, чем теперешняя наша электронная аппаратура. А этого требуют, например, задачи космической связи. Так зримо выступает великая всемирная связь явлений: от крохотной слепой летучей мыши до проблем выхода человечества в бездонные глубины космоса!
Ощущения имеют также определенную протяженность и длительность. Первая отражает количество рецептивных элементов, на которые воздействует соответствующий раздражитель, вторая — длительность действия этого раздражителя.
Так, ощущение света может охватывать все поле зрения, как, например, когда мы солнечным днем смотрим на ясное небо. А может занимать в нем ничтожную часть — как например, когда мы глухой ночью видим одинокий далекий огонек. Аналогично, ощущение может быть мимолетным, как например, вспышка фотолампы, а может устойчиво длиться, как например, неотступная зубная боль. Для каждого ощущения существуют определенные пороги протяженности и длительности раздражения, при которых оно может иметь место (так называемые пространственные и временные пороги).
Так, например, цветоощущение не возникает, если источник света имеет угловой размер меньше, чем 1 минута. В свою очередь, возникшее ощущение длится обычно еще некоторое время и после того, как раздражитель перестал действовать. Это — так называемое явление инерции ощущений. Некоторые же ощущения имеют предельную длительность, по истечение которой они исчезают, хотя раздражитель еще действует. Примеры этого мы видели, рассматривая адаптацию обоняния.
Благодаря инерции сенсорных клеток, при быстром чередовании раздражений, отдельные ощущения, которые ими порождаются, сливаются в единое, непрерывное, целостное переживание. Так, например, зрительные элементы имеют инерцию 0,1—0,9 сек. Значит, если на световом табло будут быстро (с периодом до
0,1 сек) вспыхивать одна за другой соседние лампочки, возбуждение от предыдущей вспышки не успевает исчезнуть до вспышки следующей лампочки, они сливаются, и мы видим одну движущуюся точку. Это — так называемый феномен-фи (ср). На нем основана, например, движущаяся световая реклама. Таким же образом отдельные звуки сливаются в мелодию, отдельные кадры (24 в секунду) — в движущийся кинофильм, отдельные вспышки на экране телевизора — в изображение и т.д.
Отсюда видно огромное значение явлений остаточного возбуждения в деятельности нервной системы. Уже на уровне анализаторов оно обеспечивает объединение, слияние, синтезирование информации о свойствах раздражителя по признаку их связи во времени. Так кажущийся недостаток нервных клеток — их инерционность, сравнительная медлительность их реакции —- блестяще используется природой. Он превращает рецептивные поля из простых чувствительных датчиков в интегрирующие и синтезирующие устройства.
Таким образом, внутримодальные вариации ощущений представляют собой как бы ступень более тонкого декодирования. С помощью его извлекается информация о свойствах раздражителя, которая содержится в сериях электрических импульсов, параллельно поступающих в сенсорное поле за определенный отрезок времени.
Попробуем рассмотреть этот процесс более детально. Возьмем, например, срезы всех центростремительных аксонов, идущих от сетчатки глаза, у их основания, т.е. на местах их входа в свои нейроны. Всего таких аксонов идет от сетчатки около ста тысяч.
В любой данный момент времени на каждом срезе может иметь место или фаза покоя, или фаза возбуждения, или рефракторная фаза, или фаза сверхчувствительности. Если взять за единицу отрезок времени в 6 миллисекунд (т.е. время полного срабатывания), то за этот период на срезе или будет иметь место возбуждение, или будет сохраняться фаза покоя. Иначе говоря, состояние афферентного нерва на этом срезе будет характеризоваться распределением в пространстве точек с потенциалами -80 милливольт и +40 милливольт. Условно это можно описать чередованием единиц (для возбужденного среза) и нулей (для среза в покое). Например, вот так: