Разумеется, приведенная аналогия является упрощенной. В отличие от пулемета, число «выстрелов», которые совершает нейрон, зависит не только от времени действия раздражителя, но и от его силы. Причем, разные нейроны реагируют на тот же радражитель по-разному, так как они имеют разные пороги. К тому же эти пороги не являются постоянными. В отличие от исправного пулемета, нейрон может срабатывать и без видимых внешних причин. Такие внезапные самовозбуждения нейронов, вызванные какими-то внутренними причинами, называют спонтанными возбуждениями. Наконец, тоже в отличие от пулемета, возбуждение нейрона не прекращается сразу с прекращением действия раздражителя. Такую затухающую «стрельбу», после того как «тревога» уже закончилась, называют остаточным возбуждением (или торможением).
У разных нейронов период остаточного возбуждения (торможения) различен. У рецепторных нейронов он обычно измеряется долями секунды. Но у некоторых ассоциативных нейронов он может длиться до десяти и более минут. Кроме того, длительность остаточного возбуждения (торможения) зависит еще и от силы раздражителя, его длительности, числа и характера поступивших импульсов и других факторов.
Средствами математической логики можно показать, что описанные механизмы интеграции и дифференцировки сигналов в сочетании с разнообразными формами задержек (т.е. остаточных возбуждений и торможений) достаточны для анализа и синтеза сигналов, их статистической фильтрации и перекодирования в высшие алфавиты.
Иначе говоря, уже известные нам физиологические механизмы по переработке сигналов нейронами в общем обеспечивают те основные структуры переработки информации, которые, как мы видели, лежат в основе психической деятельности.
При этом некоторые взаимодействующие системы нейронов объединены врожденными связями. Такие системы образуют как бы готовые блоки, отбирающие раздражители с заданными свойствами и перерабатывающие информацию о них по заранее заданной врожденной программе. Другие блоки вместе с их программами селекции и переработки информации формируются в течение жизни индивида на основе обучения.
В последнее время появились данные о том, что мозг располагает еще особыми механизмами селекции и переработки информации, которые принципиально отличаются от научения. В основе этих механизмов лежат спонтанные самовозбуждения нейронных групп, на основе которых в мозгу замыкаются и образуются новые связи, модели и программы, не встречавшиеся в опыте организма. Эти модели и программы затем реализуются в поведении, и практика отбирает те из них, которые правильно отражают объективную реальность.
Таким образом, по новейшим данным мозг обладает в своей деятельности значительно большей свободой, чем предполагали до сих пор физиологи и психологи. Он не только перерабатывает поступающую, но и генерирует новую информацию по каким-то своим, неизвестным еще нам, законам. В этом свете требует определенной поправки все, что мы говорили о законах образования временных нервных связей. Образование их через подкрепления на основе связей, обнаруживаемых в опыте, по-видимому, не единственный возможный путь. Вероятно, что мозг пробует и сам «на свой страх и риск» образовывать новые связи, а затем уже проверяет их в опыте. Таким образом, механизм проб и ошибок работает не только на уровне поведения, но и на уровне собственной деятельности мозга.
В свете сказанного становятся понятнее творческие возможности мозга, механизмы возникновения нереальных фантастических образов, неожиданных идей и вообще творчества.
Всеми этими своими свойствами центральная нервная система существенно отличается от современных машин, даже самых сложных. Она обладает значительной степенью внутренней самодеятельной активности за счет спонтанной работы самовозбуждающихся колебательных контуров. В нее встроены множество собственных самодействующих программ сбора и переработки информации (врожденных и приобретенных). Она сама строит свои программы и гибко изменяет их в соответствии с изменяющимися условиями существования, сама вырабатывая при этом критерии их оценки и контроля. Наконец, в результатах работы существенную роль играет элемент случайности. Они (эти результаты) определяются не только свойствами раздражителей, действующих на входы, но и случайным сочетанием собственных самовозбуждений системы в момент действия этих раздражителей.
В итоге результирующая активность организма даже в строго одинаковых условиях оказывается различной, т.е. «вход» не определяет однозначно «выхода». Эту особенность работы управляющих систем живых организмов иногда формулируют в сильном виде, так называемым, Гарвардским законом, который гласит: «В полностью контролируемых условиях животное ведет себя так, как того дьявол захочет!»
Таким образом, в целом нейронная масса выступает, как чрезвычайно гибкая система взаимодействующих и взаимосвязанных генераторов, приемников, анализаторов и накопителей сигналов. В сочетаниях изменяющихся состояний своих элементов она отображает, моделирует значимые сочетания и свойства окружающей реальности и ответные реакции организма.
Поскольку такими состояниями являются возбуждение или торможение, можно предполагать, что окружающий мир и действия организма отображаются в мозгу сложнейшими подвижными мозаиками возбуждений и торможений огромных нейронных масс. Законы этой динамики открыл И.П. Павлов.
Он показал, что они могут быть сведены к трем основным процессам: иррадиации, концентрации и индукции. Под иррадиацией понимается распространение, «растекание» возбуждения или торможения от участков, на которых они возникли, по нейронным массам, которые связаны с этими участками. Под индукцией понимается торможение определенных нейронных групп, вызываемое возбуждением в связанных с ними нейронных системах и, наоборот, возбуждение одних участков, вызываемое торможением других. Наконец, под концентрацией понимается стягивание возбуждения или торможения к определенным ограниченным нейронным системам, вызванное взаимодействием процессов иррадиации и индукции. Поскольку любая генерация, передача и переработка сигналов мозгом выражается в возбуждении или торможении различных нейронных групп, моделирующая и регуляторная работа мозга может быть интегрально описана в терминах распространения, концентрации и взаимодействия в нем возбуждений и торможений. Отсюда и вытекает универсальность понятий, предложенных Павловым.
Сегодня техника электроэнцефалографии позволяет уже непосредственно наблюдать электрические явления в мозгу, сопровождающие возбуждения и торможения нейронных систем. На экранах приборов, названных «телевизорами мозга», его деятельность видна, как сложнейшая мозаика вспыхивающих и перебегающих световых пятен, которые растекаются, сжимаются, чередуются, сливаются, распадаются на отдельные огоньки, бегут волнами по поверхности больших полушарий.
На фоне внешне хаотической активности выделяются мощные ритмические изменения электрических потенциалов, волнами распространяющиеся по всей коре. Самые мощные из них с периодом 8—13 циклов в секунду получили название альфа-ритма (а). Альфа-ритмы появляются в деятельности мозга, когда он находится в спокойном состоянии, у человека с закрытыми глазами. Стоит человеку начать о чем-нибудь напряженно размышлять или просто открыть глаза на свету, как альфа-ритмы мозговой активности исчезают. Все это наводит на мысль о связи альфа-ритма с поисками мозгом информации о внешнем мире. Потенциалы альфа-ритма как бы прожектором обшаривают мозг, возбуждая участок за участком и опрашивая все новые группы нейронов: «Как там у вас дела? Не поступило ли извне информации, требующей внимания или обработки?»
Между прочим, частота альфа-ритма приближается к частоте колебаний электромагнитного поля земли и точно совпадает с частотой дрожи пальцев при волнении, усталости или алкоголизме.
При спокойном сне альфа-ритм сменяется еще более медленным дельта-ритмом (Д) с периодом 0,5—3,5 цикла в секунду.
При напряженной мыслительной деятельности или внимании альфа-ритм, наоборот, сменяется стремительными мелкими и неровными волнами бета-ритма (Э) с частотой 30—40 циклов в секунду. Ритм этот неизменно появляется в ответ на неожиданные раздражения. Он представляет собой, по-видимому, суммарный электрический шум миллионов нейронов, участвующих в работе по отысканию, передаче и переработке поступающей информации.