Литмир - Электронная Библиотека
Содержание  
A
A

Но не слишком ли их много? Может быть, ученые продолжали свои поиски потому, что ни одно из уже найденных веществ не удовлетворяло? В какой-то мере — да. Большинство средств обладало двумя недостатками. По своему эффекту они были равны цистеину — самому первому из открытых средств, или даже уступали ему. Кроме того, чтобы вещество оказало эффект, его нужно вводить животным за несколько минут до облучения. Поэтому найти применение они могли только там, где заранее известно время облучения.

После более подробного исследования обнаружились и другие недостатки этих веществ: они далеко не всегда защищали даже при введении за вполне определенное время перед облучением. Так они защищали при облучении рентгеновыми и гамма-лучами, но не давали эффекта при облучении нейтронами и альфа-лучами. Эффективные при однократном облучении высокой дозой, они не защищали или даже повышали смертность, если общая доза делилась на несколько частей, или когда животные подвергались хроническому облучению.

Именно поэтому приходилось продолжать поиски. То, что было достаточно хорошим для одних случаев, оказывалось совершенно негодным для других.

Ученые ищут закономерности

Капитан-командор Витус Беринг открыл во время своего знаменитого плавания новые острова. В честь славного командора их назвали Командорскими. Совсем недавно исполнилось 225 лет со дня их открытия, по этому случаю выпустили памятные значки. На значках изображен морской котик, причем незадачливый художник нарисовал его с огромным пушистым хвостом. А на самом деле у морских котиков хвостов нет в отличие от котов сибирских, ангорских, сиамских и прочих. Об этом случае писали даже в журнале «Крокодил».

Случай очень характерный для человеческой психологии. Мы все, часто бессознательно, ищем закономерности там, где они есть и где их нет. Ребенок в возрасте «от двух до пяти», познакомившись с молоком и манной кашей, с одной стороны, и с папиросами и портфелем с другой, пытается все слова на «М» связывать с мамой, а на «П» — с папой. Взрослый человек, попав под дождь, на следующий день часто берет с собой дождевик, несмотря на ясное небо… А художник приделывает хвост морскому котику.

Если вы думаете, что ученый не способен на столь же необоснованные обобщения, то ошибаетесь. Ведь он такой же человек, как и все. А к тому же одно из его основных занятий — искать закономерности. Вот он и ищет их там, где они есть и где их нет. Кроме того, каждый ученый мечтает открыть какой-нибудь очень важный и очень общий закон. Поэтому нередко бывает, что никакой ошибки нет и закономерность найдена, но автор старается распространить ее на гораздо более широкий круг явлений, чем следует.

Когда открыли достаточно большое число противолучевых средств, ученые стали искать закономерности. Но, увы, слишком часто они пытались приделывать хвосты морским котикам.

Помните соображения, которые руководили радиобиологами, начавшими применять глютатион и цистеин? Эти вещества особенно энергично реагируют с продуктами радиолиза воды и, связывая их, предохраняют молекулы белка от повреждения. Для защитного эффекта глютатиона важно, что в его состав входит цистеин. А для защитного эффекта цистеина важно, что в его состав входит сульфгидрильная группа. Страшные слова «сульфгидрильная группа» обозначают всего-навсего серу, соединенную с водородом.

Было естественным попробовать другие вещества, в состав которых входит эта неудобопроизносимая группа. Почти все они оказались более или менее эффективными. Попробовали вещества, содержащие другие химические группы, которые предположительно должны связывать активированную воду, получили похожие результаты. Закономерность налицо: все защитные вещества (более осторожные ученые говорили — большинство их) помогают, связывая продукты радиолиза воды.

А потом оказалось, что сульфгидрильные группы оказывают защиту и при облучении сухих белков, то есть в условиях, где никаких продуктов радиолиза воды появиться не могло.

Механизм кислородного эффекта казался особенно ясным. Ясным казался и механизм действия цианистого калия, который, конечно, сводится к кислородному эффекту. А как с другими защитными веществами? Стали рыться в справочниках и обнаружили, что почти все они как-нибудь да влияют на дыхание. Снова все ясно: химическая защита сводится к кислородному эффекту. А кислородный эффект связан с продуктами радиолиза воды.

Невидимый современник - i_036.png

А потом оказалось, что иногда и отсутствие кислорода после облучения снижает лучевое поражение. Облучают на воздухе и только после облучения замещают его азотом. А поскольку продукты радиолиза воды, которым приписывается такая большая роль, живут лишь ничтожные доли секунды, то как увязать эти результаты с теорией? Кроме того, обнаружили, что отсутствие кислорода защищает от лучевого поражения и совершенно высушенные клетки и белки в виде сухого порошка, где продуктам радиолиза воды вообще неоткуда взяться.

Не все привлекали для своих теорий химию и физику. В годы увлечения «нервизмом» кое-кто утверждал, что все противолучевые средства оказывают свой эффект путем действия на центральную нервную систему. Доказать это нетрудно, ведь все, что угодно, прямо или косвенно может влиять на центральную нервную систему. Однако те же самые «нервные» препараты защищают от лучевого поражения растения, у которых нет никакой центральной нервной системы. Больше того, те же средства защищают, например, растворы метиленовой синьки от обесцвечивания при облучении.

Этот скорбный список теорий, умерших, не достигнув даже зрелости, можно продолжать очень долго…

Что же получается? Выходит, что все теории неправильны и во всех опытах исходили из неправильных предпосылок? Однако это не так. Скорее наоборот: все были правы. Или лучше сказать, что в каждой теории содержалась доля правды.

Ошибка многих «теоретиков» состояла в том, что они хотели объяснить действие всех веществ одним общим механизмом. А это неправильно. И если механизм действия разных веществ различен, то это гораздо интереснее для теории и дает больше перспектив для практики.

Пики смертности

Сколько надежд и разочарований связано с любой экспериментальной работой! А при поисках противолучевых средств испытываешь их особенно часто.

Чем большей дозой облучены животные, тем меньше в среднем они живут после облучения. Естественно, разные дозы применяют при изучении защитных веществ. И каждый, кто ими занимался, пережил одно и то же. Ввели животным лекарство, облучили… В контроле животные прожили в среднем по девять дней, а из подопытных больше половины «проскочили» через контрольный месячный срок и продолжают жить. Ставится следующий опыт, с несколько большей дозой облучения, и после радости и надежд — горькое разочарование. Контрольные мыши прожили в среднем по три с половиной дня. А подопытные погибли. И мало того, в среднем через три с половиной дня… Цифра эта не придумана для примера. Именно три с половиной дня — сакраментальное число, которое, увы, так часто приносит разочарование радиобиологу.

А бывает и наоборот. Контрольные животные погибают через три-четыре дня, а часть подопытных продолжает жить. Проходит благополучно пятый, шестой, седьмой день. Но на восьмой животные становятся вялыми, отказываются от пищи, а на девятый все подыхают. Защитный эффект, увы, оказался временным.

Но все это еще ничего. Бывает и так. Поставлен опыт, получены блестящие результаты. Чтобы окончательно убедиться в сделанном выводе, опыт повторяют, и, хотя это просто повторение и ничто не менялось, все получается как раз наоборот.

Причина таких случаев — особенность биологических процессов. Иногда противопоставляют биологию так называемым точным наукам. Это неправильно. Биология не менее точна, чем, скажем, физика. Только сам характер точности иной. И математика нужна биологам не меньше, а даже больше, чем представителям других наук. Причем и математика не совсем та, что физикам.

35
{"b":"238786","o":1}