Литмир - Электронная Библиотека

Подобные коллизии с желанием побыстрее рассказать об удивительной находке в последние годы случались не раз. И дело тут не в недобросовестности или легкомыслии журналистов. Некоторые факты и выводы должны ждать своего подтверждения многие годы. Такова их специфика. Но беда в том, что именно такие, еще не признанные всеми, часто загадочные явления как раз и вызывают наибольший интерес. Они будят воображение, вдохновляют на поиски. Плохо другое — когда недостоверный, а то и просто сомнительный факт подается как сенсация и при том сопровождается намеками: наука, мол, его пока не признает, мало ли чего она сначала не признавала, а потом признала, да и кто сказал, что ей все уже известно... За примерами ходить далеко не надо: у всех на памяти полуфантастические репортажи о кожном зрении, о телекинезе, телепатии и тому подобных чудесах.

Взять хотя бы телекинез — передвижение предметов усилием воли. Принципиальную возможность подобных явлений обычно обосновывают тем, что нам недостаточно еще известны механизмы мозга. Да, это так, но вместе с тем можно с полной уверенностью утверждать: какими бы свойствами ни обладал мозг, его воздействие на физические тела не может не передаваться посредством какого-то материального агента, какого-то физического поля, и притом чрезвычайно сильного, если оно может двигать предметы. Но мы уже достаточно знаем устройство мозга, чтобы сказать: столь сильные поля мозг создавать не может. А коли так, сообщения о телекинезе либо мистификация, либо самообман.

Несколько иначе обстоит дело с телепатией — передачей чувств и мыслей на расстояние. Нельзя в принципе исключить того, что электромагнитные колебания, которыми сопровождается процесс мышления, могут улавливаться другим сверхчувствительным приемником-мозгом. Явного противоречия с физикой здесь нет. Хотя с точки зрения количественных оценок это выглядит крайне маловероятным. Все силы убывают с расстоянием. Исключение составляют, пожалуй, лишь межкварковые силы. Они должны быть совсем другими. Только этим и можно объяснить, почему нуклон не удается расщепить на отдельные кварки.

Большинство физиков склонны считать, что свободных, изолированных кварков в природе не существует. Кварки наглухо заперты внутри элементарных частиц, и никакими силами выбить их оттуда нельзя. Почему что так, мы точно еще не знаем, хотя некоторые объяснения этому удивительному свойству кварков теоретики уже нашли. Это действительно связано с особенностями поля, передающего взаимодействие между ними.

О квантах этого поля, глюонах, нам известно, по правде говоря, не больше, чем о кварках. Их ведь тоже никогда не наблюдали в свободном виде, как наблюдают, например, отдельные фотоны. Все, что мы о ни знаем,— результат теоретических расчетов и косвенных наблюдений.

У глюонов нет массы. Этим и некоторыми другими свойствами они похожи на фотоны. Но в отличие от них глюоны, так сказать, «саморазмножающиеся» частицы. Они сами, независимо от кварков, создают вокруг себя новое глюонное поле. Фотоны таким свойством не обладают, у них нет заряда и никакого нового электромагнитного поля вокруг их не образуется. Наибольшую интенсивность электромагнитное поле имеет вблизи заряда, его источника, а далее оно постепенно рассеивается в пространстве и ослабевает. Глюоны же — заряженные частицы. Они несут на себе специфический кварковый заряд — «цвет», который порождает новые глюоны, новые порождают следующие и так далее. Это приводит к тому, что глюонное поле не ослабевает, а наоборот, возрастает при удалении от порождающего его кварка. Выходит, как это ни парадоксально, кварки слабее всего связаны, когда они находятся на малых расстояниях друг от друга. Если же кварки пытаются разойтись, то сразу же возрастают стягивающие их силы. Другими словами, кварки становятся свободными не на поверхности элементарных частиц, а, наоборот глубоко внутри этих частиц.

В атомах и в их ядрах сильнее всего связаны внутренние слои. Кварковая структура элементарных частиц, наоборот, наиболее жесткой и крепко сцементированной оказывается на ее периферии. В общем, по сравнению с другими частицами у кварков все шиворот-навыворот. Острословию физиков на этот счет нет предела. Они, например, любят говорить о «центральной свободе и периферическом рабстве» кварков.

Не помню, кто это начал первым, кажется Абдус Салам, но вот уже много лет на конференциях физиков поддерживается забавная традиция изображать главную обсуждаемую ими проблему в виде веселого символического рисунка. Хорошо помню, например, рисунок американского физика Политцера, где он изобразил свое представление о свободе кварков в недрах элементарных частиц; ей была посвящена целая конференция

Если в один из кварков, находящихся внутри элементарной частицы, выстрелить очень быстрым электроном этот кварк получит большой импульс и отскочит. Но это движение будет продолжаться лишь до тех пор, пока удерживающие его глюонные силы не возрастут настолько, что их энергии станет достаточно для рождения пары кварка и антикварка. Антикварк и выбитый электроном кварк «слипнутся» в мезон, а оставшийся кварк займет внутри частицы место выбитого. И в результате все будет выглядеть так, будто кварк остался на месте и одновременно, как бы из ничего, родился мезон. Такой процесс «размножения» кварков и попытался изобразить Политцер...

Теперь должно стать понятно, почему не удается расколоть нуклон на три кварка: сколько по нему ни бей, из него всякий раз будут вылетать целые частицы, а не их осколки — кварки и глюоны!

Впрочем, все эти соображения о свойствах глюонных сил имеют пока только качественный характер. Ни теория, ни эксперимент не могут сказать, достаточно ли этих сил для полного удержания кварков внутри элементарных частиц. Специалисты предполагают, что это так, но здесь могут быть и сюрпризы.

Нельзя сказать, чтобы ученых удовлетворяло создавшееся положение. Один физик как-то заметил, что конференции по теорий кварков напоминают ему историю о том, как однажды мыши собрались на конгресс, чтобы решить, что им делать с разбойником-котом. Долго и с жаром спорили, судили, рядили, пока одна из них не предложила:

— Надо подвесить ему колокольчик!

— Правильно! — обрадовались остальные и, довольные найденным решением, стали расходиться.

— Но кто же это сделает? — нерешительно пискнул молодой мышонок.

— Детали — в рабочем порядке! — оборвал его председатель...

В любой науке, не только в физике, есть утверждения, доказательство которых приходится откладывать до лучших времен. А уж когда имеешь дело с экспериментом, гипотез никак не избежать. Строгая теория придет потом, а на первых порах это единственная возможность как-то осмыслить и привести в порядок результаты опытов.

Чтобы лучше понять природу и свойства сил, запирающих кварки внутри частиц, физики строят теоретические модели. Эти модели не только учитывают уже известные факты, но и содержат новые предположения. Результаты модельных расчетов проверяются опытом. Модель уточняется. За этим следуют новые эксперименты.

В правильности гипотезы «кварковой тюрьмы» внутри элементарных частиц, или «конфаймента» (в буквальном переводе с английского «тюремное заключение», как часто говорят физики, убеждают нас успехи хромодинамики. Так по аналогии с электродинамикой называют теперь раздел физики, изучающий кварк-глюонные взаимодействия. Электродинамика описывает взаимодействие фотонов с электрическим зарядом, хромодинамика — взаимодействие глюонов с цветовым зарядом. Она хорошо согласуется с опытом, и из ее формул следует, что связь «цветных» частиц действительно становится более сильной при увеличении расстояния между ними. К сожалению, точно решать уравнения хромодинамики мы умеем пока только для малых расстояний, в других случаях возможны лишь приблизительные модельные прикидки.

Неожиданный результат получается, если с помощью хромодинамики вычислить массу кварков на малых расстояниях, где они свободные, почти не взаимодействующие частицы. Оказывается, невзаимодействующие кварки очень легки: они весят в 100 раз меньше нуклона. Большей массой обладает кварк, входящий в состав странных частиц, но и он почти в 10 раз легче нуклона. Лишь у «очарованного» и «прелестного» кварка масса больше, чем у нуклона. Но эти кварки встречаются редко, окружающее нас вещество можно «слепить» почти без всякого их участия. Их было много лишь тогда, когда происходил синтез кваркового вещества.

14
{"b":"237798","o":1}