Литмир - Электронная Библиотека

Прошло почти двадцать лет с тех пор, как я впервые провел различие между двумя типами развития науки – нормальным и революционным[3]. Большая часть успешных научных исследований укладывается в изменение первого типа, которое вполне соответствует привычному образу: нормальная наука производит материал, который научное исследование добавляет к постоянно возрастающему запасу научного знания. Эта кумулятивная концепция развития науки хорошо известна, и именно она породила громадное количество методологической литературы. И она сама, и ее методологическое сопровождение применимы ко многим важным видам научной деятельности.

Однако развитие науки выказывает также признаки не-кумулятивности, эпизоды некумулятивного развития позволяют по-новому осветить важнейшие стороны научного познания. Здесь я попытаюсь выделить несколько ключевых идей, для начала дав описание трех примеров революционного изменения, а затем кратко рассмотрев три характерные черты, присущие всем этим примерам. Конечно, революционные изменения обладают и другими общими чертами, однако эти три особенности обеспечивают достаточную основу для теоретического анализа, которым я сейчас занят и которым неожиданно заинтересовался, когда заканчивал эту статью.

Прежде чем обратиться к первому примеру, позвольте мне – для тех, кто не очень хорошо знаком с моей терминологией – пояснить, что это за пример.

Революционное изменение частично определяется его отличием от нормального изменения, а нормальное изменение, как уже упомянуто, добавляет нечто к тому, что уже известно. Например, обычным результатом этого нормального процесса являются научные законы: иллюстрацией может служить закон Бойля. Его первооткрыватели предварительно имели понятие о давлении газа и его объеме, а также обладали инструментами для определения величины давления и объема. Открытие того факта, что для конкретного газа при постоянной температуре произведение давления на объем является константой, просто добавило что-то к нашему знанию о том, как ведут себя эти уже ранее известные переменные[4]. Громадное большинство научных достижений относится к этому нормальному виду развития. Но я не буду без нужды умножать примеры.

Революционные изменения являются иными и гораздо более проблематичными. Они включают в себя открытия, которые нельзя совместить с ранее используемыми понятиями. Чтобы сделать или ассимилировать такое открытие, человек должен изменить сам способ мышления и описания естественных феноменов. Открытие Ньютоном (в подобных случаях лучше говорить об «изобретении») второго закона движения принадлежит к этому типу. Понятия силы и массы, входящие в этот закон, отличаются от похожих понятий, использовавшихся до введения этого закона, и сам закон играет существенную роль в определении этих понятий.

Вторым, более развернутым, хотя и более простым примером может служить переход от астрономии Птолемея к астрономии Коперника. До этого перехода Солнце и Луна были планетами, а Земля планетой не была. После этого перехода Земля стала планетой, подобно Марсу и Юпитеру, Солнце стало звездой, а Луна превратилась в небесное тело нового вида – спутник.

Изменения подобного рода нельзя свести к исправлению чьих-то ошибок, содержащихся в системе Птолемея. Подобно переходу к законам движения Ньютона, они включают в себя изменения не только в законах природы, но также и в критериях, согласно которым термины, входящие в эти законы, применяются к природе. Более того, сами эти критерии частично зависят от теории, вместе с которой они вводятся.

Когда такие изменения в референции сопровождают изменения законов или теорий, развитие науки не может быть вполне кумулятивным. Нельзя перейти от старого к новому, просто добавив новое к уже известному. И это новое нельзя описать в словаре старого, и наоборот.

Рассмотрим составное предложение: «В системе Птолемея планеты вращались вокруг Земли; в системе Коперника они вращаются вокруг Солнца». Строго говоря, это предложение является бессвязным. Первое вхождение термина «планета» является птолемеевским, второе – коперниканским, и оба термина применяются к природе по-разному. Это составное предложение является истинным только вследствие отсутствия единого прочтения термина «планета».

Столь схематичные примеры лишь намекают на то, что происходит во время революционного изменения. Поэтому я хочу обратиться к более полным примерам, начав с того, который лет тридцать назад привел меня к осознанию революционных изменений, а именно: с перехода от физики Аристотеля к физике Ньютона. Здесь может быть рассмотрена лишь его небольшая часть, касающаяся проблем движения и механики, да и то весьма схематично. Вдобавок я переворачиваю историческую последовательность и описываю не то, что требовалось натуральному философу-аристотелианцу, чтобы прийти к ньютоновским понятиям, а то, что нужно мне, ньютонианцу, для того, чтобы прийти к понятиям философии природы Аристотеля. Я буду путешествовать в глубь веков, руководствуясь текстами, аналогично тому, как ранние ученые двигались вперед, руководствуясь не текстами, а самой природой.

Некоторые физические сочинения Аристотеля я впервые прочитал летом 1947 г. Будучи аспирантом-физиком, я хотел представить анализ конкретного случая развития механики для учебного курса по науке для неспециалистов. Неудивительно, что к текстам Аристотеля я подходил с позиций ньютоновской механики, которая казалась мне совершенно ясной. Я надеялся найти ответ на вопрос: что из механики было известно Аристотелю и что осталось открыть таким людям, как Галилей и Ньютон.

При таком подходе я быстро обнаружил, что Аристотель почти ничего не знал из механики. Практически все было сделано последующими поколениями, по большей части в XVI и XVII столетиях. Это был вполне стандартный вывод, и в принципе он мог быть справедливым. Однако он вызывал у меня беспокойство, поскольку, по мере чтения, Аристотель казался мне не только невеждой в механике, но и вообще чрезвычайно плохим ученым. В частности, его сочинения о движении казались мне наполненными ужасными ошибками – как в логике, так и в наблюдении.

Это было неправдоподобно, ибо Аристотель, в конце концов, был величайшим систематизатором античной логики. Спустя два тысячелетия после его смерти труды его играли почти такую же роль в логике, как труды Евклида в геометрии. Аристотель часто проявлял себя чрезвычайно тонким наблюдателем природы. В частности, в биологии его описания служили моделями, сыгравшими центральную роль при формировании современной биологической традиции в XVI и XVII столетиях.

Почему выдающиеся способности изменяли ему, когда он обращался к изучению движения и механики? Опять-таки если способности ему здесь изменяли, то почему его сочинения по физике привлекали столь серьезное внимание на протяжении многих столетий после смерти? Эти вопросы неотступно преследовали меня. Я мог бы легко поверить в то, что Аристотель ошибался, но казалось невероятным, что, обращаясь к физике, он вообще утрачивал разум. «Может, ошибаюсь я, а не Аристотель, – спрашивал я себя. – Возможно, для него и его современников слова означали не совсем то, что они означают для меня?»

Охваченный сомнениями, я продолжал ломать голову над его текстами, постепенно мои подозрения обрели прочную основу. Я сидел за своим письменным столом, перечитывая «Физику» Аристотеля с цветным карандашом в руке. Погруженный в размышления, я оторвался от текста и рассеянно взглянул в окно. Внезапно обрывки мыслей в моем сознании сложились в совершенно новую картину. Я вдруг понял, что Аристотель был очень хорошим физиком, но особого рода, о котором я никогда не думал. Теперь я смог понять, что он говорил, почему говорил и на чем основывался его авторитет. Утверждения, которые ранее казались мне ошибочными, теперь предстали в качестве элементов влиятельной и в целом успешной традиции.

вернуться

3

T.S. Kuhn, «The Structure of Scientific Revolutions» (Chicago: University of Chicago Press, 1962).

Русский перевод: Кун Томас. Структура научных революций. М., ACi; 2001. – Примеч. пер.

вернуться

4

Выражение «ранее известные» ввел К. Гемпель, показавший, что во многих случаях оно может заменять понятие «наблюдаемые» при рассмотрении разницы между терминами наблюдения и теоретическими терминами (см., в частности, его работу «Aspects of Scientific Explanation». New York: Free Press, 1965, pp. 208ff. – Русский перевод: Гемпель К.Г. Логика объяснения. М., 1998). Я заимствовал у него это выражение, потому что понятие ранее известного термина, по сути, является историческим и его употребление в рамках логического эмпиризма указывает на важную область пересечения между традиционным подходом в философии науки и более новым историческим подходом. В частности, тонкий аппарат, разработанный логическим эмпиризмом для формирования и определения теоретических терминов, часто можно целиком перенести в рамки исторического подхода и использовать при анализе образования новых понятий и определения новых терминов, что обычно происходит при введении новой теории. Более систематическая процедура частичного сохранения различия между эмпирическим и теоретическим посредством включения его в исторический подход была разработана Й.Д. Снидом («The Logical Structure of Mathematical Physics». Dordrecht: Reidel, 1971, pp. 1—64, 249–307). Вольфганг Штегмюллер уточнил и расширил подход Снида, предложив иерархию теоретических терминов, в которой каждый уровень вводится конкретной теорией, возникавшей в истории науки («The Structure and Dynamics of Theories». New York: Springer, 1976, pp. 40–67, 196–231). Общая картина лингвистических напластований обнаруживает интересные параллели с концепцией Мишеля Фуко, представленной им в: «The Archeology of Knowledge», trans. A.M. Sheridan Smith (New York: Pantheon, 1972). – Русский перевод: Фуко M. Археология знания. Киев, 1996.

4
{"b":"218929","o":1}