Литмир - Электронная Библиотека

Хорошим примером такого рода является красная линия атомного кислорода 6300 Å, которую излучают атомы О, возбужденные в состояние 1D. Изучая пути образования и гибели этих атомов, выяснили, что на высотах ионосферной области F2 они образуются в результате основных ионосферных реакций (ионно-молекулярные реакции и диссоциативная рекомбинация), а потому тесно связаны с состоянием ионосферы в этой области. Таким образом, наблюдая за свечением линии 6300 Å даже с Земли, можно судить о поведении весьма важной области ионосферы. Сейчас уже думают о мониторинге (т. е. постоянном наблюдении в разных местах Земли) красной линии, чтобы контролировать поведение ионосферного слоя F2, что очень важно для диагностики и прогнозирования распространения коротких радиоволн.

Имеются и другие идеи, как использовать атмосферные эмиссии для контроля процессов, в которых участвуют возбужденные частицы. Так, по поведению молекул O2(1Δg), за которыми удается следить, наблюдая инфракрасные полосы в области 1,27 мк, можно судить о ночном количестве озона на высотах около 80 км, где прямые измерения Оз ночью весьма затруднены. А распределение с высотой ряда эмиссий, порождаемых возбужденными атомами и молекулами кислорода, дает сведения о вертикальном профиле атомного кислорода на высотах 80 - 110 км, в области, где хуже всего проводить его прямые измерения.

Таковы основные особенности возбужденных частиц, которые делают их столь важными для аэрономии и послужили причиной столь пристального внимания к ним в последнее время.

Не все возбужденные атомы и молекулы, которые могут появляться в верхней атмосфере, способны активно вмешиваться в важные аэрономические процессы. Как правило, речь идет о так называемых метастабильных возбужденных частицах, т. е. о частицах, время жизни которых относительно излучения достаточно велико. Мы уже говорили в начале этой книги о понятии "время жизни". В данном случае речь идет о том, сколько данная частица может просуществовать (если на нее не влияют никакие посторонние факторы) между моментом возбуждения и моментом спонтанного (самопроизвольного) излучения запасенной энергии в виде кванта. Для так называемых разрешенных состояний это время очень мало и составляет ничтожные доли (10-3 - 10-4 и даже меньше) секунды. Естественно, частицы в таких состояниях не успевают ни накопиться до значительных концентраций, ни принять участие в каких-либо процессах: едва родившись, они отдают свою энергию в виде излучения и вновь переходят в невозбужденное состояние.

Другое дело - метастабильные состояния. Частица в таком состоянии может находиться не излучая многие секунды, минуты, а в некоторых случаях - часы и дни. Например, время жизни относительно излучения атомов O(1D) составляет 100 с, а молекул O2(1Δg) - 1,5 ч. Естественно, что за такое долгое время жизни метастабильные частицы могут и накопиться в значительных количествах, и принять участие в различных аэрономических реакциях.

Именно о частицах, возбужденных в метастабильные состояния, или просто о метастабильных частицах, и идет обычно речь, когда говорят о роли возбужденных частиц в аэрономии. А роль эта, как мы понимаем уже сейчас, настолько велика, что советский ученый М. Н. Власов, много сделавший для изучения метастабильных частиц в верхней атмосфере, предложил область атмосферы, где концентрации этих частиц максимальны и где они принимают самое активное участие в аэрономических процессах, по аналогии с другими "сферами" называть эксайтсферой (от английского "excite" - возбуждать). Как и у многих других сфер, рассмотренных в этой книге, границы эксайтсферы достаточно размыты и точно определить их трудно. Тем не менее ясно, что днем наибольший вклад метастабильные частицы вносят на высотах 40 - 300 км. Суммарный профиль возбужденных частиц в дневной эксайтсфере имеет два максимума - примерно на 45 и 120 км. Первый обусловлен молекулами кислорода в состоянии 1Δg, о которых мы здесь неоднократно упоминали. Эти молекулы доминируют в эксайтсфере ниже 100 км. Второй максимум образован колебательно возбужденными молекулами азота, о которых мы поговорим ниже. Эти молекулы являются основной составляющей дневной эксайтсферы выше 100 км. Остальные метастабильные специи, о которых упоминалось в этом параграфе, располагаются в виде слоев различной ширины и с различной концентрацией (меньшей, однако, чем [N2#] и [О2(1Δg)]) на высотах от 80 до 300 км.

Ночью границы эксайтсферы значительно сужаются - она располагается на высотах 60 - 150 км с максимумом на высоте около 100 км. Основной составляющей ночной эксайтсферы являются все те же молекулы O2(1Δg), причем концентрации последних, так же как и других обитателей эксайтсферы, ночью значительно ниже, чем днем.

В ходе изложения наступил момент, когда читатель ждет от автора ответа на вопрос: "В каких же конкретных аэрономических процессах играют роль (и какую) метастабильные частицы?" К сожалению, достаточно полно ответить на него пока нельзя. И дело здесь не только в неизбежной сложности изложения, выходящей за рамки данной книги, но и в том, что исследование этого вопроса как раз и идет полным ходом сейчас, в данный момент развития аэрономии.

Перечислим здесь лишь несколько общих проблем и несколько примеров (часть которых уже встречалась на страницах этой книги) для иллюстрации.

Одна из проблем аэрономии, в которой метастабильные частицы должны играть очень важную роль,- это проблема теплового баланса. Метастабильные частицы участвуют в этой проблеме двояко.

Во-первых, имея избыток внутренней энергии, они могут отдавать ее при столкновениях окружающим частицам, приводя к изменению их термического режима, т. е. в конечном итоге - их температуры. Именно так, видимо, влияют колебательно возбужденные молекулы N2 на электроны в области Е, что может в ряде случаев приводить там к превышению Те над температурой нейтралов.

Во-вторых, возбужденные частицы сами являются показателем термодинамического режима той или иной области атмосферы и могут свидетельствовать в ряде случаев об отклонении этого режима от равновесного. Так, колебательные температуры молекулярного азота (т. е., грубо говоря, количество молекул N2, возбужденных на различные колебательные уровни) могут быть в эксайтсфере в несколько раз выше, чем соответствующие кинетические температуры окружающих атомов и молекул.

К сожалению, в вопросе о роли метастабильных частиц в термическом режиме верхней атмосферы ясна лишь важность самого вопроса - все остальное еще предстоит исследовать.

Могут участвовать метастабильные частицы и в процессах ионизации. Об этом мы уже говорили и в главе 5 и в этом параграфе. Видимо, ионизация возбужденных молекул кислорода играет роль в области D как днем, так и ночью. Днем это в основном ионизация молекул О2(1Δg) излучением с λ= 1118÷1027 Å, ночью - ионизация рассеянным излучением в линии Lα колебательно возбужденных молекул O2. Последний процесс может быть существен ночью и в области Е, внося тем самым вклад в решение проблемы ночного источника ионизации, о которой мы подробно рассказали в главе 4. Однако отсутствие точных данных об эффективности ионизации возбужденных молекул и о потоках рассеянного излучения затрудняет пока надежные количественные оценки.

Очень велика может быть роль возбужденных частиц в фотохимии заряженных частиц в области D. Уже ясно, что молекулы O2(1Δg) активно участвуют в двух важных реакциях - в отлипании электронов от ионов О2- и в разрушении ионов О4+. Однако можно ожидать, что и другие возбужденные частицы принимают существенное участие в очень сложном комплексе процессов, который идет в области D.

В последние годы много говорилось о зависимости важнейшей ионосферной ионно-молекулярной реакции O+ + N2, с которой мы много раз встречались в этой книге, от колебательного возбуждения (колебательной температуры) азота. Недавние лабораторные данные показывают, что константа скорости этой реакции реагирует на изменение колебательной температуры N2 так же, как на изменение кинетической температуры ионов O+. Значит, при построении теоретических моделей области F2 (что сейчас очень развито из-за влияния этой области на распространение радиоволн) необходимо помимо прочих исходных данных знать и количество . колебательно возбужденных молекул азота. А это - еще плохо разрешимая задача. При этом, естественно, встает вопрос о том, как влияют (и влияют ли) колебательно возбужденные молекулы N2 и O2 на другие ионно-молекулярные реакции в ионосфере. Однако ответа на него пока нет.

36
{"b":"210793","o":1}