Литмир - Электронная Библиотека

Общее количество 2340 + 2340 =

выпущенной

продукции = 4680 деталей

Вот так результат! Мы сразу же, можно сказать бесплатно, на том же оборудовании увеличили производительность на 1080 деталей, т. е. на целых 30 %.

Нас, однако, продолжает мучить законный вопрос – добились ли мы уже самого лучшего, оптимального решения, или нет? Стоит ли дальше пытаться улучшить план?

В теории математического программирования убедительно показывается, что оптимальному решению соответствует одна из вершин многоугольника допустимых планов, а именно та, для которой общая производительность окажется максимальной. В нашем случае это вершина С.

Действительно, рассчитывая известным уже нам путем план распределения станков для этой точки, получим следующее решение (табл. 7.4).

Таблица 7.4

Станок

Продолжительность работы станка, мин

Производительность станка (количество деталей за время работы)

А

Б

А

Б

№1

0

360

0

1800

№2

360

0

2160

0

№3

90

270

450

810

Общее количество 2610 + 2610 =

выпущенной = 5220 деталей

продукции

Мы получили план почти наполовину (на 45 %) лучше, чем глазомерный. И этот существенный прирост, подобно и предыдущему улучшению, ничего (если не считать умственных усилий на планирование) не стоит. Никакого дополнительного расхода каких-либо ресурсов не потребовалось. Те же станки, те же детали, те же станочники работают то же время. Не меняются и производительности станков. Эффект здесь чисто интеллектуальный, «умственный», – за счет рационального распределения ресурсов оборудования (кстати, латинское слово «рационалист» означает «разумный»). Умное, обоснованное решение сделало чудо, в которое даже трудно поверить. Подобный «чудесный» результат, как мы уже понимаем, характерен для всех решений, принимаемых с помощью научных методов.

Может возникнуть, правда, вопрос: а нельзя ли обойтись в подобных задачах без какого-либо специального математического аппарата, идя путем простого перебора всех возможных вариантов решения? Этот соблазн следует тут же отмести. Расчет показывает, что перебор всех возможных вариантов решений подобных задач не под силу даже самому большому коллективу вычислителей.

Уместно отметить еще несколько интересных моментов, связанных с решением данной задачи. Полученный нами оптимальный план – это не просто правильный, допустимый план распределения оборудования, по которому можно работать, – такими были и оба предыдущих. Они обеспечивали как беспростойность оборудования, так и комплектность продукции. Оптимальный план помимо того, что он должен отвечать этим требованиям, должен быть еще обязательно самым эффективным. В данном случае это означает требование максимума деталей. Действительно, как уже отмечалось, оптимизация обязательно должна предусматривать обращение одного из показателей в максимум (или минимум). Но только одного показателя. Нельзя вести оптимизацию по нескольким показателям одновременно. Между тем мы часто слышим: «максимум продукции при минимуме издержек». А правильно будет: «максимум продукции при данном уровне издержек» или «минимум издержек при данном уровне продукции».

И еще один важный вывод, к которому подводит станковая задача: оптимизация возможна лишь по верхнему уровню управления, для всей производственной системы в целом. В данном случае это означает, что мы получили оптимальный план лишь для всех трех станков вместе. А для каждого в отдельности? Тут оптимальности может и не быть. В нашей задаче оптимальный план явно не понравится станочнику, работающему на станке № 3: при большей производительности – 5 деталей в минуту – план предлагает ему работать всего 90 минут, а при меньшей – 3 детали в минуту – целых 270 минут. Но тут уже ничего не поделаешь: чтобы получить оптимальный, сбалансированный план предприятия, кому-то на нижнем уровне приходится работать в неоптимальном режиме. И значительно дешевле компенсировать издержки «внизу», чем лишиться огромного эффекта оптимизации работы целого предприятия.

Несколько слов о существе решения станковой задачи. Идея математического программирования заключается в том, чтобы вместо сплошного (иногда говорят – слепого или дурного) перебора всех возможных вариантов вести перебор выборочный, направленный на скорейшее последовательное улучшение результата. Поэтому в нашей задаче мы и рассматривали не все точки области допустимых планов (их бесчисленное множество), а только вершины многоугольника, одна из которых и дала нам наилучшее решение.

Методы математического программирования находят широкое применение для обоснования оптимальных решений в самых различных областях человеческой деятельности: при планировании перевозок и в торговле, для правильной организации труда, в управлении городским транспортом и строительством.

Рассмотрим, как вырабатываются правила решения еще одной важной производственной задачи.

Резервы раскроя

Изготовление многих видов современной промышленной продукции начинается с раскроя материала. Выкраивают не только одежду и обувь, но и детали корпуса корабля, кузова автомобиля, фюзеляжа самолета. Раскраивают ткани и кожу, бумагу и стекло, металл и пластмассу. Кроить можно по-разному...

Перед нами листы дефицитного материала размером 6 х 13 метров (рис. 7.4). Из каждого такого листа необходимо выкроить по несколько заготовок двух видов: заготовки А – размером 5x4 метра и заготовки Б – размером 2x3 метра. Задача заключается в том, чтобы получить как можно больше заготовок обоих видов с наименьшим количеством отходов. Кроме того, как и в задаче со станками, необходимо обеспечить комплектность заготовок: на 1 заготовку А должно приходиться 5 заготовок Б.

Как вести раскрой? Какое решение принять?

Менеджмент. Учебник - _37.jpg

Рис. 7.4. Способы раскроя материала

Прежде всего, нужно установить все возможные способы раскроя наших листов по требуемым заготовкам. Начнем с того, что постараемся получить с одного листа как можно больше заготовок А – они крупнее, чем Б, и для них труднее подыскать место на листе. Оказывается, однако, что более трех заготовок А с листа выкроить невозможно. Исходя из этого предусмотрим способы раскроя для получения трех, двух и одной заготовки А и наибольшего возможного количества заготовок Б с листа. Каждому способу дадим номер:

71
{"b":"210536","o":1}