Литмир - Электронная Библиотека

Подобными оказались: направление фаз (первая противоположна второй и третьей), соотношение амплитуд этих фаз (амплитуда растет от первой фазы к третьей), общая величина ответа, скорость спада потенциала, направление движения зарядов через мембрану.

Все эти параметры как бы паспорт белка-генератора. Они зависят от устройства генератора. Поэтому у разных белков должны быть разные «паспортные данные». В этом мы смогли убедиться еще до опытов со зрительным родопсином, когда исследовались хлорофилл-белковые комплексы фотосиитезирующих бактерий.

Вот какими показателями характеризовалась хлорофилл-белковая система в условиях, идентичных тем, что мы использовали для родопсинов: выявлялись только две однонаправленные фазы нарастания фотопотенциала, причем первая фаза (быстрее 0,2 микросекунды) была гораздо больше по амплитуде, чем вторая (20 микросекунд). Добавление некоторых искусственных переносчиков электронов вело к появлению еще одной, небольшой по амплитуде фазы, направленной в ту же сторону. В спаде фотопотенциала преобладала компонента со временем около 30 миллисекунд. (У родопсинов — секунда.) Как видно, эти параметры резко отличались от тех, что были обнаружены при исследовании бактериального и животного родопсинов.

Итак, оба родопсина дают фотоэлектрические ответы, характеристики которых либо близки, либо просто совпадают. Поскольку функция бактериородопсина превращение энергии света в электрическую форму, напрашивается предположение, что неизвестная функция животного родопсина также состоит в производстве электричества за счет света. Именно такую рабочую гипотезу мы взяли на вооружение, убедившись в сходстве «паспортных данных» двух родопсинов.

У бактерий электричество, генерируемое на свету, используется для синтеза АТФ, транспорта ионов внутрь клетки, вращения бактериальных жгутиков и т. д. Но зачем нужно электричество при зрении?

Пожалуй, самое поразительное свойство зрения состоит в том, что клетка палочки может возбуждаться одним-единственным квантом света. Ясно, что столь малая порция энергии может привести в действие механизм возбуждения только при условии размножения команды, поданной светом.

Есть несколько конкурирующих гипотез о способе размножения светового сигнала. Мы остановились на одной из них, так называемой кальциевой. В фоторецепторных дисках, заключенных внутри клетки палочки, накапливаются ионы кальция (вероятно, за счет энергии АТФ). При поглощении кванта света молекулой родопсина, встроенной в мембрану диска, происходит повышение проводимости этой мембраны для ионов, в частности для кальция. Ионы кальция выходят из диска, где их много, в омывающую диск цитоплазму, где их мало. Свет как бы дырявит диск, и этот мешок с кальцием начинает «протекать».

Поскольку в диске много ионов кальция, и все они могут «вытечь» через одну-единственную дырку, сделанную квантом света, происходит «размножение» сигнала: один квант вызывает выход в цитоплазму многих ионов кальция.

Следующее предположение состоит в том, что вышедший кальций достигает внешней мембраны клетки и закрывает имеющиеся в ней натриевые каналы. Катион Na+ перестает поступать в клетку, что повышает электроотрицательность внутриклеточного содержимого относительно межклеточной среды. Такое повышение мембранного потенциала (минус внутри клетки) и есть возбуждение. Весть об этом событии будет затем передана на окончания зрительного нерва и далее по нерву в мозг.

Отдельные моменты этой схемы доказаны. Так, известно, что ионы кальция, накопленные в дисках в темноте, выходят оттуда под действием света; что кальций, введенный в клетку, закрывает натриевые каналы, вызывает гиперполяризацию клеточной мембраны и возбуждение; что без кальция возбуждение невозможно и т. д.

Совершенно неясным оставался лишь первый этап всей этой длинной цепи событий: почему поглощение кванта света приводит к повышению проницаемости мембраны диска и достаточно ли быстро это происходит (весь зрительный акт от поглощения кванта до возбуждения зрительного центра в мозгу занимает порядка 100 миллисекунд, и потому любые процессы, включенные в передачу сигнала, должны протекать за время меньшее, чем 100 миллисекунд)?

Неожиданно для себя мы прежде всего получили ответ на второй из поставленных вопросов: быстро ли повышается проводимость мембраны под действием света.

Наши предшественники М. Монтал, У. Хейгенс (автор «кальциевой» гипотезы зрения) и другие использовали слишком медленные способы измерения. В наших опытах быстрым и чувствительным индикатором проводимости мембраны оказалась скорость спада фотопотенциала после лазерной вспышки. Чем больше проводимость, тем быстрее спадает фотопотенциал, что и неудивительно: «дырявая» мембрана не может удерживать разности потенциалов после выключения генератора.

Опыты показали, что медленнее всего спадает потенциал, полученный при первой вспышке света. Уже вторая вспышка дает более быстрый спад, а к двенадцатой спад фотопотенциала ускоряется примерно в сто раз. И здесь выяснилось, что этот эффект (ускорение спада) развивается за отрезок времени, меньший чем 100 миллисекунд. Стало быть, увеличение проводимости действительно может участвовать в основной цепи событий процесса зрения.

Интересно, что ускорение спада фотопотенциала было обнаружено благодаря ЭВМ. Повторные вспышки сильно снижают амплитуду фотопотенциала (с каждой следующей вспышкой все большая доля родопсина оказывается обесцвеченной, то есть выведенной из игры). Мы могли бы и не заметить ускорение спада на фоне резкого снижения амплитуды самого эффекта, тем более что первоначально об анализе динамики спада никто не думал: все внимание было сосредоточено на самом эффекте генерации потенциала.

А. Драчев, пробуя всевозможные варианты обсчета фотоэффекта, как-то раз попросил машину нормировать электрические ответы родопсина по их амплитуде. И немедленно обнаружилось, что с каждой последующей вспышкой ускоряется спад потенциала.

Итак, налицо было два новых факта: однократное срабатывание родопсина приводит, во-первых, к генерации разности потенциалов на мембране дисков и, во-вторых, к очень быстрому повышению проницаемости той же мембраны.

Второй из этих эффектов не что иное, как нарушение барьера, удерживающего ионы кальция внутри диска. Освобождение кальция из диска в цитоплазму — это согласно «кальциевой» гипотезе один из этапов зрительного акта. Но почему повышается проницаемость и в чем смысл первого эффекта - генерации разности потенциалов?

А что, если первый эффект — причина, а второй — следствие? Ведь известны случаи, когда разность потенциалов на мембране управляет ее проницаемостью, открывая ионные каналы. Именно так действуют электровозбудимые мембраны (например, мембрана нервного волокна — аксона). Существует и другой тип мембран — химически возбудимые, когда ионные каналы открываются под действием особых химических соединений — медиаторов. Примером такого рода может быть мембрана нервного окончания.

Так, может быть, мембрана диска относится к классу электровозбудимых? Тогда загадочная функция животного родопсина ничем не отличается от известной уже функции бактериородопсина: это производство электричества за счет света. Отличие двух систем будет лишь в дальнейшей судьбе полученного родопсинами электричества. У бактерий созданная за счет света разность потенциалов идет на синтез АТФ и обеспечение других видов работы клетки, а в фоторецепторных дисках она, эта разность потенциалов, открывает в мембране какие-то ворота, через которые затем выходят из диска ионы кальция.

Неужто мы свели концы с концами? Да, теперь, по-видимому, мы можем разъяснить все основные обстоятельства дела.

Понятно, почему так похожи два родопсина: ведь функция у них общая! Или почему кальций на свету выходит из дисков: поле, образованное родопсином, прорубает в мембране дорогу этому иону. Ясно также, в чем причина неудач наших предшественников: пока оставались неизвестными «паспортные данные» родопсиновых генераторов, не было оснований приписывать зрительному родопсину ту функцию, которая выяснена для родопсина бактериального.

33
{"b":"209872","o":1}