Литмир - Электронная Библиотека

В 21 государстве из всех, входящих в МАГАТЭ, работают 227 атомных электростанций. Их суммарная мощность доведена до 110 тысяч мегаватт. Таким образом, мирный атом обеспечивает около 6 процентов мирового производства электроэнергии.

Несмотря на обильные запасы горючих ископаемых, СССР также бурно развивает атомную энергетику.

В донских степях вырастает «Атоммаш» — завод, олицетворяющий уровень техники и технологии XX века.

Волгодонск (Ростовская область), небольшой порт, родившийся вместе с Волго-Донским каналом и морем, числился перспективным. Прежде это был городок химиков, и химический завод, выпускающий синтетические жирные кислоты, построенный в пятидесятые годы, был самым крупным предприятием города. Но пять лет назад (декабрь 1975 года) из промерзших, развороченных котлованов, из донской земли начал подниматься будущий богатырь — «Атоммаш». И сегодня уже поднялись во весь рост могучие голубые корпуса нового завода.

Пять лет назад те, кто начинал строительство завода атомного машиностроения, реактор видели только на картинке. А в декабре 1978 года уже состоялся торжественный выпуск первой очереди «Атоммаша». Были введены в строй мощности по выпуску трех миллионов киловатт реакторного оборудования.

Чтобы понять, что это значит, достаточно сказать: мощность в 3 мегаватта равна 18 Цимлянским ГЭС или 12 Днепрогэсам! Так было введено в действие уникальное сооружение в области энергетического машиностроения, не имеющее себе равных в мире. Общее стремление атоммашевцев — дать первый действующий атомный реактор мощностью в один миллион киловатт, источник самой дешевой энергии.

Первый «миллионник» — только начало. Подобные блоки мощностью в миллион киловатт затем будут серийно выпускаться на «Атоммаше» для АЭС, которые вырастут в следующих пятилетках.

Ну а как же все-таки с энергетическим голодом? Достаточно ли велики запасы ядерного горючего?

Урана на Земле вдосталь. Если учесть возможность его экстракции (извлечения) из морской воды — его там что-то около 5 миллиардов тонн! — то этих запасов хватит на тысячелетия.

Однако сравнительно дешевого урана (месторождения, пригодные для разработок), подходящего для энергетических целей, на земном шаре на первый взгляд не так-то уж много.

Оценки дают цифру — 4 миллиона тонн приблизительно. В общем эти запасы соизмеримы, например, с нефтяными ресурсами. Нужно, однако, учесть: в хорошо отработанных и получивших ныне широкое распространение АЭС с реакторами на тепловых нейтронах (тепловые реакторы) практически лишь очень небольшая часть урана (около 1 процента) может быть использована для выработки электроэнергии. «Горит» лишь уран-235, а остальные 99 процентов (другие изотопы урана, например, уран-238) — балласт, идущий в отвал.

А можно ли использовать уран полнее, в идеале — на все 100 процентов? Новейшая наука отвечает — да!

Эта возможность — в широком применении атомных «реакторов-размножителей», работающих не на медленных, как у «старых» атомных реакторов (тепловых), а на так называемых быстрых нейтронах. В этом случае в дело идет и уран-238, и торий-232 (торий тоже может служить ядерным горючим), и другие изотопы.

В результате из килограмма природного урана можно получить в 20—30 раз больше энергии, чем в обычных ядерных реакторах на уране-235. А значит, можно себе позволить не только дешевый уран, но и более дорогой, который находится, например, в океанской воде, в разбавленных (бедных) рудах, в кислых горных породах. И потенциальные ресурсы атомной энергетики станут тогда примерно в 10 раз выше по сравнению с традиционной энергетикой (на органическом топливе). Но это еще не все. Реакторы на быстрых нейтронах (за рубежом их называют бридерами) переводят, оказывается, ядерное топливо из разряда невосполнимого, как уголь и нефть, в разряд практически вечных источников энергии. Попутно в процессе своей работы реактор на быстрых нейтронах перерабатывает уран-238 в плуто-ний-239, а торий-232 в уран-233. Таким образом, в бридерах «зола», «отходы» сами становятся горючим. А это в конечном счете означает практически неограниченное (с точки зрения современных масштабов) расширение потенциальных сырьевых ресурсов атомной энергетики. И реакторы на быстрых нейтронах — это не мечта отдаленного будущего, это наш сегодняшний и завтрашний день.

В молодом городе Шевченко, раскинувшемся на берегах седого Каспия, с 1973 года действует демонстрационный промышленный реактор БН-350. В нем быстрые нейтроны вырабатывают 125 тысяч киловатт электроэнергии и тепло для получения 80 тысяч кубических метров опресненной воды в сутки. А 25 апреля 1980 года

Леонид Ильич Брежнев поздравил всех тех, кто способствовал завершению строительства и вводу в эксплуатацию реактора БН-600 — третьего энергоблока Белоярской АЭС имени И. В. Курчатова. Крупнейший в мире (его мощность составила уже 600 тысяч киловатт) уникальный энергоблок станет у нас в стране прототипом промышленных быстрых реакторов первого поколения.

Атомные котельные и термояд

Но представим себе, что все электростанции стали атомными. Увы, расход природного тепла уменьшится лишь на 20 процентов. Уголь и нефть нужны химической промышленности, металлургии и так далее! А так как значительная часть электростанций СССР работает на угле, то экономия нефти и газа составит не более 10 процентов. Поэтому идет поиск путей применения атомной энергетики и в других областях. В частности, по предложению Совета Министров СССР разрабатывается оригинальная идея — «реакторов для теплоснабжения городов».

Логика вещей, казалось бы, подсказывает совместить на АЭС получение и электроэнергии и тепла. Прежде это делалось на ТЭЦ, по тому же типу будут действовать и АТЭЦ — атомные теплоэлектроцентрали. А котельные, снабжающие жителей теплом, исчезнут ли они, когда век действительно станет атомным? Нет! Останутся. Только называться они будут АСТ — атомные станции теплоснабжения.

Конечно, от прежней котельной останется очень мало. Уже первые АСТ (строительство подобных головных станций уже начато в Горьком и Воронеже) будут гигантами, рассчитанными на мощность в 1000 мегаватт (два блока по 500). Такая махина обеспечит тепловые нужды жилого массива с населением в 250 тысяч человек. Масштабы для прежних котельных недоступные.

Преимущества таких одноцелевых (только выработка тепла) установок в том, что они могут успешно функционировать, имея гораздо более низкие рабочие параметры, чем АТЭЦ. У последних температура должна быть как минимум 300 градусов. В АСТ же для прямого теплоснабжения хватит и 150—200 градусов (в теплосеть пойдут 130—150) К тому же давление вместо обычных 160 атмосфер составит всего лишь 16. Но одно тянет за собой другое. Резко уменьшаются требования к обеспечению безопасности работы таких установок. Скажем, на обычных АЭС для отвода тепла нужна специальная система насосов, их электроснабжение и так далее. В АСТ всего этого нет — достаточно и естественной циркуляции воды. Вот и получается: сам принцип конструкции АСТ, его простота не оставляют места для аварийных ситуаций или же позволяют создать надежные и недорогие защитные устройства. Насос повредился? А его в АСТ нет! Разрушился корпус реактора? А их будет два — второй страховочный.

Поэтому ввиду их полной безопасности АСТ можно будет разместить непосредственно в жилых кварталах, в 2—3 километрах от границы жилого массива. И не последний вопрос — себестоимость. АСТ окупятся за 5—6 лет... Но, может быть, дело тут не только в цене. Котельные, работающие на угле и нефти, дают газовые выбросы, загрязняющие атмосферу городов. Кроме того, АСТ разгрузят транспорт от тяжкого бремени перевозок органического топлива... Небольшие «атомные» котельные могут использоваться для снабжения теплом агропромышленных комплексов, жилья и производства в районах Крайнего Севера и Дальнего Востока. Станцию можно разобрать на блоки, самые тяжелые из которых весят 20 тонн, и доставить в любой уголок страны.

Со временем появится у атома и новая работа. Академик А. Александров, говоря о будущем атомной энергетики, подчеркивал, что атом проникнет в металлургию, химическую промышленность и другие отрасли.

4
{"b":"209773","o":1}