Литмир - Электронная Библиотека
A
A

Итак, полагая, что суть магнитного поля есть движение эфирных частиц, то процесс, необходимый для реализации идеи Коровина, должен быть организован на уровне строения элементарных частиц. Схему трехполюсного магнита NSS можно представить в разрезе (в плоскости), как показано в левой части рис. 51. Примем условно, что втекание эфирной среды происходит в полюса S, а истекание – из полюсов N.

Новые космические технологии - i_051.png

Рис. 51. Предположения о структуре многополюсных магнитов

В такой гипотетической частице, истекание потока эфира происходит из полюса N, в одном направлении, а втекание – с двух сторон, перпендикулярно оси истекания потока. Оба полюса S должны находиться диаметрально на «экваторе». В таком случае, реакции среды на втекание потока в полюса SS нет, обе силы взаимно компенсируются. В данной схеме, можно ожидать появление движущей силы Р, как реакции среды на преимущественный поток вдоль оси полюса N.

В объемном варианте, мы можем предположить существование тетраэдрической структуры магнитного поля. Схема четырехполюсного магнита NSSS показана в правой части рис. 51. Втекание потоков может быть организовано с трех разных сторон, в полюса S, расположенные на «экваторе» гипотетической частицы. Такое расположение полюсов S должно компенсировать реактивный импульс среды на втекание эфира в данную физическую систему. Истекание эфира в одном преимущественном направлении N должно приводить к реакции среды, создавая движущую силу.

Динамическим аналогом структуры NSS, показанной на рис. 51, являются колебательные движения простого двухполюсного магнита, то есть, элементарного кольцевого тока, создаваемого электроном. При этом, один из полюсов, например, полюс S, должен совершать не вращение, а колебания в плоскости, рис. 52.

Новые космические технологии - i_052.png

Рис. 52. Колебательные движения магнитного момента в плоскости

Подобные механические процессы были показаны ранее, на примере «перевернутого маятника». Они вызывают известную реакцию эфирной среды на укоренное криволинейное движение тела. При криволинейной траектории движения электрона по орбите с переменным радиусом, также появляется возможность использовать градиент давления эфира на электрон, рис. 53. Данное предложение было мной рассмотрено в докладе 1996 года [1]. Механический аналог для данного принципа был показан на примере движителя Вейника, рис. 15.

Новые космические технологии - i_053.png

Рис. 53. Орбита электрона, имеющая эксцентриситет

Технически, эту идею удобнее реализовать в диэлектриках, приложив поперек диэлектрической пластины электрическое поле, которое исказит траекторию движения электронов. Позже мы рассмотрим эту технологию, в главе о работах Томаса Т. Брауна. Впрочем, возможно, что Коровин нашел технологию создания такого удивительного материала, в котором орбиты электронов искажались, то есть, приобретали эксцентриситет, за счет намагничивания.

Далее, развивая эти предложения о строении гипотетических частиц, вспомним о динамическом варианте, то есть, о прецессии магнитного момента. На рис. 54 показано, что циркуляция потоков эфира, возникающая при вращении многополюсного магнита NSSS вокруг оси ON, имеет много общего с процессами движения электрона, у которого создана прецессия магнитного момента. Итак, от размышлений о гипотетических частицах, имеющих признаки многополюсного магнита, мы пришли к известной схеме – прецессии магнитного момента электрона, выполняющей аналогичные функции. Все эти схемы не нарушают законы сохранения количества эфирного «рабочего вещества», циркулирующего в «движителе». Закон сохранения импульса соблюдается, так как суммарный импульс втекающих и вытекающих потоков равен нулю. Тем не менее, векторная сумма сил реакции эфирной среды, в некоторых схемах, не равна нулю, что позволяет надеяться на работоспособность данной идеи.

Новые космические технологии - i_054.png

Рис. 54. Аналогия многополюсного и прецессирующего магнитного момента

Динамический подход к магнитному полю, как к потокам циркулирующей среды, открывает возможности для создания новых материалов, способных создавать потоки эфира и направленную движущую силу, как реакцию среды на асимметрию строения частиц материи, либо их колебательные, прецессионные и другие сложные движения. Применение таких материалов возможно как в роли движителя, так и для решения задачи «экранирования» (компенсации) потоков эфира.

Напомню, что изначально, Коровин собирался создать аналог дирижабля, способного двигаться в космосе, в околоземном пространстве, под водой и даже под землей, везде, где основной окружающей средой является «мировой эфир». Развивая идею о том, что «эфирный дирижабль» необходимо заполнить «горячим эфиром» пониженной плотности, Коровин мог прийти к выводу о необходимости создания специального материала, способного служить «перегородкой» между областями эфира различной плотности. Вопрос экранирования потоков эфира, как и технологии экранирования гравитации, следует ставить, как вопрос компенсации потока эфира (гравитации).

Предположим, что разработанный Коровиным фантастический материал корпуса имел такие свойства, которые позволяли направленно создавать поток эфира. Такой материал должен иметь свойства, аналогичные простому магниту: все его частицы, будучи элементарными излучателями эфира, должны быть упорядочены, то есть, ориентированы в нужном направлении. Дополнительно, эти частицы должны иметь характеристики многополюсных магнитов, например, прецессирующий магнитный момент. При согласованной ориентации таких частиц, испускаемые каждой частицей потоки эфира будут сонаправлены. При наличии такого материала, представляется возможным создать внутреннюю область «дирижабля», в которой плотность эфирной среды будет меньше, чем снаружи. Поддержание данного состояния не потребует затрат энергии, как не требует затрат энергии однажды намагниченный постоянный магнит. В таком случае, область пространства внутри «дирижабля Коровина» будет вытесняться вверх более тяжелой окружающей средой, таким же образом, как пузырь воздуха в воде.

К вопросу об управлении горизонтальным движением аппарата, можно предположить, что эти функции обеспечивали «рули и паруса», изготовленные из материала, отражающего поток эфира. В области околоземного пространства, существует один мощный суммарный поток эфира, направленный к центру планеты. Используя некоторые элементы конструкции, условно показанные в левой части рис. 55, представляется возможным создать реактивное отражение падающего потока влево, для того, чтобы аппарат двигался вправо.

Новые космические технологии - i_055.png

Рис. 55. Схема управления эфироплавательным аппаратом

Источником информации по рассматриваемой теме, для нас служат письма Ивана Федоровича Коровина Константину Эдуардовичу Циолковскому, в период 1903–1917 года, и знаменитый Дерптский архив, который был создан по распоряжению императрицы Александры Федоровны в Университете города Дерпт, который был переименован в Юрьев, а затем в Тарту. В архив собирались сведения со всей Российской Империи, о «происшествиях необычных, неподдающихся объяснению науки». Император Николай относился к увлечению супруги с пониманием, но поставил это дело без широкой огласки, так как православная церковь не одобряла развитие мистических знаний.

Дерптский Университет был выбран для данной работы с архивами потому, что в нем, как говорил император Николай, сохранялся «дух розенкрейцерства». Финансирование сотрудников Университета, работавших над сортировкой информации, поступавшей со всей Российской Империи, продолжалось до 1917 года. В 1918 году, город Юрьев заняли немцы, Университет и архив были перевезены в Воронеж. В 1942 году, при отступлении советских войск, поступил приказ об уничтожении архива, и, формально, приказ был выполнен. Однако, копии некоторых документов перешли в частные руки. Благодаря им, мы располагаем интереснейшей, хотя и непроверенной, информацией, публикуемой сегодня в интернет.

15
{"b":"209073","o":1}