Литмир - Электронная Библиотека

При использовании кислотного электролита, вблизи оси вращения образуются положительные ионы водорода. Получив из металлического корпуса электроны, они рекомбинируют в молекулы водорода. Более тяжелые анионы собираются на периферии вращающегося объема, отдают электроны в корпус металлического ротора, что приводит к образованию молекул кислорода.

Центробежными силами, легкие молекулы кислорода выталкиваются более тяжелыми ионами к оси вращающегося объема электролита. Через отверстия в валу, образующиеся молекулы кислорода и водорода удаляются из вращающегося объема, и подаются потребителю. Данная электрохимическая реакция разложения воды является эндотермической, то есть может продолжаться только при наличии теплообмена с внешней средой. С этой целью, на вход теплообменника поступает остывший на периферии вращающегося объема осадок, а в центральную область вращающегося объема подается подогретый до температуры окружающей среды электролит. Добавление чистой воды извне необходимо, по мере разложения воды на кислород и водород.

По данным авторов-разработчиков, теоретически, на каждый ватт затраченной механической мощности, из внешней среды поглощается от 20 до 88 ватт теплоты, соответственно производимому из воды количеству газа. Это означает эффективность 20 к 1 или даже 88 к 1. В такой конструкции, один кубический метр условного рабочего объема электролизера, позволял бы получать за секунду 3,5 кубометра водорода.

В свое время, информация авторов о своей разработке вызвала большой интерес инвесторов, в том числе зарубежных, но позже, многие заявления авторов экспериментально не подтвердились. В 2010 году, данный проект еще не вышел на уровень коммерциализации. Темой занималась компания «Аламбик Альфа», в Москве. Полезные статьи по теме «хемиэлектрический гравитолиз Студенникова» опубликовал Макаров Андрей Фадеевич из Кемерово. Дополнительную информацию можно найти в журнале «Новая Энергетика», на нашем сайте.

Получение тепла путем кавитации при разнообразных способах вращения воды, подробно рассматривать не будем. Желаюшдм изучить основы вихревых теплогенераторов (ВТГ), рекомендую найти в Интернет работы Юрия Семеновича Потапова. С моей точки зрения, избыточная тепловая энергия в таких устройствах также является результатом преобразований свободной энергии эфира путем использования центробежных инерциальных эффектов, возникающих при вращении рабочей жидкости: вращение создает давление, сжатие рабочей жидкости и увеличение ее потенциальной энергии, что можно использовать для создания автономных источников энергии. Все остальные эффекты в устройствах кавитационного типа являются вторичными.

Кстати, один из таких косвенных эффектов ВТГ мы изучали в совместном проекте с Валерием Владимировичем Лазаревым, Университет Санкт-Петербурга. Идея нашего эксперимента состояла в проверке влияния кавитации на степень радиоактивности жидкости, которая циркулировала в ВТГ. Мы успешно, в двух различных экспериментах, показали, что процесс кавитации уменьшает не только уровень радиоактивности самой жидкости, но и общий радиоактивный фон вокруг работающего ВТГ. Подробности можно найти на нашем сайте www.faraday.ru.

Практические успехи в области создания энергетически автономных устройств, на основе данного принципа, успешно и давно развиваются, например, «квантовые теплоэлектростанции» КТЭС Потапова, рис. 45.

Новые источники энергии - i_045.png

Рис. 45. Схема двухступенчатой электростанции КТЭС Потапова

В них происходит не только нагрев жидкости, но и вырабатывается электроэнергия, необходимая для насосов и внешнего потребителя. Рассмотрим схему: Насос 6 качает воду в «циклон» 3, а после ускорения воды выходит через сопло 9 на гидротурбину 11, которая соединена с электрогенератором. В нижней емкости 13 установлена вторая гидротурбина 14, также связанная с электрогенератором. На выходе из сопла 9 вихревого теплогенератора температура рабочей среды составляет порядка 70 – 100 градусов Цельсия и давление 8 – 10 атм. Этот поток обеспечивает работу первой турбины. Турбина в нижней емкости приводится в действие жидкостью, перемещающейся под действием собственного веса из верхней емкости. Таким образом, одновременно с производством тепловой энергии, получение которой обеспечивает теплогенератор 1, в установке вырабатывается электрическая энергия. Получение этой электроэнергии и тепла не требует никаких затрат топлива, ее производство является экологически чистым. Данными по заводу-изготовителю, протоколам испытаний и опыту эксплуатации таких электростанций мы не располагаем.

Разумеется, конструктивные особенности ротора, имеющего специальные элементы, увеличивающие кавитацию, а также специальная траектория движения воды, и другие факторы, являются важными для получения максимума тепловой энергии при минимальном расходе электроэнергии привода, создающего вращение. Тем не менее, логика событий следующая: вращение рабочей массы жидкости (после разгона) затрат не требует (потери на трение не учитываем), давление создается в результате инерциальных свойств материи, а именно, градиента эфира, который нами воспринимается, как центробежная сила. Далее, давление обуславливает избыточную энергию, которая проявляется в виде избыточного тепла или скорости движения (кинетической энергии) рабочей массы жидкости.

Важный аспект: получив давление, за счет центробежной силы, надо обеспечить возможность рабочей массы двигаться с ускорением, то есть «преобразовать статику в динамику», потенциальную энергию в кинетическую. Дальнейшее развитие событий, например, использование кинетической энергии потока воды или воздуха, нам известно.

В качестве перспективного направления поиска решения задачи автономного энергоснабжения, приведу еще один пример аналогичной конструкции. На рис. 46 показано фото и схема эксперимента Харди.

Новые источники энергии - i_046.jpg

Рис. 46. Схема эксперимента и фото колеса турбины генератора

Автор Джеймс Харди (James D. Hardy) получил патент США 2007/0018461 A1 от 25 января 2007 года. Конструкция примитивная, домашнего изготовления. О параметрах насоса: для эксперимента применялся насос высокого давления от компактной автомобильной мойки высокого давления, питание от сети 220VAC. Такие насосы создают струю воды с давлением около 100 атмосфер.

Производительность насоса около 350–600 литров воды в час. Мощность потребления примерно 1 киловатт в час. Расчет величины мощности, которую можно было бы получить от турбины, если полностью использовать кинетическую энергию такого потока воды (350 кг в час при давлении 100 атм), мы производить не будем. По экспериментальным данным, ее хватает для того, чтобы даже самодельная турбина, показанная на фото, и обычный электрогенератор работали в автономном режиме, обеспечивая электропитание насоса и нескольких ламп накаливания, выполняющих роль полезной нагрузки. По особенностям конструкции генератора Харди отметим, что его турбина с «ложками» вращается недостаточно быстро, чтобы обеспечить вращение электрогенератора с требуемыми 1500 оборотов в минуту. Поэтому на валу турбины установлен маховик большого диаметра для ременной передачи на вал генератора, который имеет меньший диаметр. Видеофильм данного эксперимента можно посмотреть в Интернет http://www.youtube.com/watch?v=qhwQt1tJYa8

Рассмотрим еще один проект с участием Юрия Семеновича Потапова, который был незавершен нами по ряду причин. Проект, который мы проводили в 2004–2005 годах, получил название «молекулярный двигатель», по предложению Потапова. Фото установки, которую мы построили и испытывали в нашей лаборатории, показано на рис. 47.

Новые источники энергии - i_047.jpg

Рис. 47. Экспериментальная установка ООО «ЛНТФ», 2004 г.

15
{"b":"209072","o":1}