Литмир - Электронная Библиотека

В соединительной ткани портальных полей содержатся также лимфоциты, гистиоциты, плазматические клетки и фибробласты.

Начальным звеном желчевыводящей системы являются межклеточные желчные канальцы, образованные билиарными полюсами нескольких смежных гепатоцитов. Стенкой желчных канальцев являются цитоплазматические мембраны гепатоцитов. Межклеточные желчные канальцы, сливаясь друг с другом, образуют перилобулярные желчные проточки (холангиолы, терминальные дуктулы, канальцы Геринга), имеющие базальную мембрану. Проходя через терминальную пластинку гепатоцитов, в перипортальной зоне холангиолы впадают в междольковые желчные протоки (дукты, холанги). Междольковые протоки выстланы кубическим эпителием. Протоки, сливаясь, становятся крупными септальными протоками, выстланными призматическим эпителием.

Общий печеночный проток складывается в воротах печени из правого и левого печеночных протоков, которые в свою очередь формируются из внутриорганных желчных ходов. В составе печеночно-двенадцатиперстной связки общий печеночный проток соединяется с пузырным протоком, идущим из желчного пузыря. Шейка пузыря образует с телом пузыря и с пузырным протоком два изгиба. Мышечная оболочка пузырного протока развита слабо. Общий печеночный проток, слившись с пузырным протоком, образуют общий желчный проток. Желчный проток заложен в печеночно-двенадцатиперстной связке. Он является по направлению продолжением печеночного протока. Общий желчный проток открывается в просвет двенадцатиперстной кишки. Дистальный конец общего желчного протока завершается слоем гладкой мускулатуры – сфинктером печеночно-поджелудочной ампулы (Одди). На последнем участке желчный проток соединяется с протоком поджелудочной железы и впадает в общую полость (ампулу). Ампула открывается в просвет двенадцатиперстной кишки в большом сосочке.

Функционально печень выполняет многоплановую работу, сопряженную с обменом и детоксикацией организма. Она играет фундаментальную роль в метаболизме аминокислот, углеводов и жиров, причем пути превращения перечисленных соединений в печени тесно переплетаются и взаиморегулируются.

Белковый обмен. Первоосновой белкового обмена являются аминокислоты. Аминокислоты могут образовываться в самой печени из углеводов и жирных кислот. Они поступают в печень из других органов, возникая вследствие клеточного распада. Кроме того, аминокислоты поступают в организм экзогенно через пищеварительный тракт. В печень экзогенные аминокислоты поступают с кровотоком по портальной вене. Сыворотка крови содержит сложный комплекс различных белков, большинство из них синтезируются в печени. Рибосомами печеночных клеток синтезируются альбумин, фибриноген, протромбин, фактор VII, проконвертин, проакцелерин, а также основная часть альфа– и бета-глобулинов, гепарина. Плазматические клетки и звездчатые ретикулоэдотелиоциты печени синтезируют гамма-глобулины.

Уровень общего белка остается нормальным у большинства больных с патологией печени, но часто снижено содержание альбуминов сыворотки и повышено глобулинов, преимущественно фракции гамма-глобулинов.

Белковую природу имеют многочисленные ферменты, синтезируемые органеллами печеночных клеток. Необходимое условие нормального функционирования печени и всего организма – соблюдение динамического постоянства всего комплекса ферментов при выполнении внутриклеточных функций (лактатдегидрогенеза, аланинаминотрансфераза, аспартатаминтрансфераза, альдолаза, малатдегидрогеназа, глутаматдегидрогенеза и др.). Ферменты могут подвергаться протеолизу, инактивации, выделению с желчью (щелочная фосфатаза, лейцинаминопептидаза, гамма-глутамилтранспептидаза, бета-глюкуронидаза, 5-нуклеотидаза), с мочой (амилаза); некоторые ферменты выделяются в кровь, выполняя в ней определенные функции (холинэстераза, псевдохолинэстераза, церулоплазмин, антикоагулянты).

Вместе с тем в печени происходят процессы расщепления белков до образования мочевины в ходе реакций дезаминирования и окисления пептидных соединений; осуществляется катаболизм нуклеопротеидов до аминокислот, пуриновых и пиримидиновых оснований, которые, превращаясь в мочевую кислоту, выделяются впоследствии почками.

Углеводный обмен. Большая часть углеводов поступает в кровь в виде глюкозы. Поступающая с кровью воротной вены глюкоза может утилизироваться ферментом глюкокиназой при чрезмерном ее количестве. В результате процесса фосфорилирования, катализируемого глюкиназой, в печени образуется глюкозо-6-фосфат. Он является субстратом для таких процессов, как синтез гликогена, гликолиза, пентознофосфатного пути и гидролиза.

Гликоген обеспечивает временный резерв для поддержания необходимой концентрации глюкозы в крови при различных состояниях – голодании, физической нагрузке, стрессе.

Печень способна также синтезировать гликоген из молочной кислоты.

При распаде гликогена под действием фосфорилазы образуется глюкоза-1-фосфат, который трансформируется в исходный глюко-6-фосфат. Процесс образования глюкозо-6-фосфата из гликогена называется гликогенолизом. Адреналин, глюкагон, соматотропный гормон и тироксин стимулируют гликогенолиз, а АКТГ, глюкокортикоиды и инсулин активируют синтез гликогена. Под влиянием печеночной глюкозо-6-фосфатазы из глюкозо-6-фосфата образуется глюкоза, которая вновь поступает в кровь.

Процесс гликолиза в печени ведет к образованию предшественников дальнейших процессов биосинтеза (образования жирных кислот) и образованию пирувата для окислительных процессов.

Пентозофосфатный путь ведет к регенерации НАДФ × Н, необходимого для восстановительных реакций, участвующих в синтезе жирных кислот, а также в синтезе холестерина и стероидов; образование пентозофосфатов для синтеза нуклеотидов, необходимых для синтеза ДНК и РНК.

Глюконеогенезом называется процесс образования глюкозы из источников неуглеводной природы (лактата, глицерина и аминокислот). Этот источник синтеза глюкозы функционирует в печени и корковом веществе почек. В случае голодания в организме наблюдается мобилизация запасенных в жировой ткани триглицеридов путем их гидролиза до глицирина и жирных кислот. Жирные кислоты поставляются в другие ткани, где используются в качестве субстратов дыхания. Глицерин транспортируется в печень и почки, где играет роль предшественника глюконеогенеза.

С обменом углеводов связан синтез глюкуроновой кислоты, необходимой для конъюгации плохо растворимых веществ и образования смешанных полисахаридов.

Жировой обмен печени лежит в основе таких процессов, как синтез жирных кислот из ацетил-КоА, этерификация жирных кислот и запасание триглицеридов, секреция триглицеридов в кровь в форме липопротеидов очень низкой плотности, синтез фосфолипидов и эфиров холестерина, липолиз триглицеридов, окисление жирных кислот и образование кетоновых тел.

Печень и жировая ткань обусловливают запасание триглицеридов (жирных кислот). При необходимости триглицериды печени используются другими тканями – они поступают в кровь либо в виде липопротеидов очень низкой плотности, либо в форме кетоновых тел.

Печень обладает способностью извлекать из кровотока жирные кислоты плазмы, которые затем подвергаются этерификации или окислению с образованием с образованием соответственно триглицеридов и кетоновых тел.

Катаболизм жирных кислот осуществляется путем бета-окисления, в процессе которого происходит активирование жирной кислоты с участием коэнзима А и АТФ.

Освобождающийся ацетилкоэнзим А подвергается окислению в митохондриях, в результате чего клетки снабжаются энергией.

Под термином кетоновые тела подразумевают ацетоуксусную кислоту, оксимасляную кислоту и ацетон. Ацетоуксусная и оксимасляная кислоты играют существенную роль в поддержании энергетического гомеостаза для мышц и мозга.

При сахарном диабете компенсаторно усиливается мобилизация жиров с образованием большого количества ацетил-КоА. В то же время вследствие нарушения углеводного обмена происходит уменьшение образования оксалатацетата, при помощи которого ацетил-КоА включается в цикл Кребса и окисляется до углекислого газа и воды. Накопление большого количества ацетил-КоА приводит к увеличенному образованию ацето-ацетил-КоА и в результате значительному увеличению количества ацетона, ацетоуксусной кислоты и бета-оксимасляной кислоты, которые выделяются с мочой.

7
{"b":"201326","o":1}