Литмир - Электронная Библиотека
A
A
Поиски космических гнездовий

В 2003 году на одной широкой африканской равнине около города Виндхук (Намибия) близилась к завершению работа по созданию группы из четырех необычных телескопов. Но даже до того, как был готов последний из них, телескопы, работающие попарно, смогли увидеть, как происходит образование заряженных частиц на космических «фабриках» — в остатках взорвавшихся звезд. Ученые давно это предполагали, но, пока не появились новые результаты из Африки, подтверждений тому было недостаточно.

Трудность в том, что космические лучи — это заряженные частицы. Магнитные поля в Галактике и в непосредственной близости от Солнца и Земли заставляют их отклоняться от первоначального пути. И к тому времени, когда мы можем обнаружить эти частицы по соседству с нами, они поступают равномерно с разных сторон. Направление их движения говорит нам не больше о том, откуда они начали свой путь, чем полет мясной мухи.

Астрономы все же не теряли надежды отыскать места зарождения космических лучей. Когда частицы сталкиваются с атомами в космическом пространстве, они в том числе производят гамма-лучи. То есть там, где сконцентрировано много космических лучей, там гамма-излучение должно быть сильнее. И так как гамма-лучи — это форма света, они летят из своего источника к Земле по прямой, как и любой другой видимый свет.

Обычное космическое гамма-излучение, испускаемое радиоактивными элементами, могут зафиксировать наши спутники. В отличие от него гамма-лучи, выходящие из «фабрик по производству космических лучей», должны быть в тысячу раз сильнее. Чтобы их обнаружить, нужны большие телескопы, способные уловить отблески излучения в небе. Когда космические лучи вонзаются в атмосферу, они разгоняют электроны до скорости большей, чем скорость света в воздухе, и те в свою очередь производят ударные световые волны.

Телескоп обсерватории «Уиппл» (Аризона) был специально сконструирован для обнаружения таких ударных волн, и в 1989 году он первым уловил высокоэнергетические гамма-лучи, идущие от остатков сверхновой. Это была хорошо известная Крабовидная туманность в созвездии Тельца, где в 1054 году взорвалась сверхновая звезда. Но тогда телескоп не смог определить направление, откуда пришли космические лучи, во всяком случае, он определил его недостаточно точно, и астрономы так и не смогли сказать, в какой конкретно части увеличивающегося облака Крабовидной туманности образуются гамма-лучи.

Это открытие воодушевило специалистов, но так как они надеялись добиться большего, ученые взялись за усовершенствование своих инструментов. Одним из таких инструментов и стал четырехзеркальный телескоп в Намибии, названный «ГЕСС» в честь открывателя космических лучей. Над проектом трудились ученые из Германии, Франции, Англии, Чехии, Ирландии, Армении, Южной Африки и Намибии.

Когда часть зеркал была завершена, их направили на остатки сверхновой в созвездии Скорпиона, предположительно такого же возраста, что и Крабовидная туманность. Так как сейчас много астрономических объектов, остаток сверхновой в созвездии Скорпиона получил имя, похожее на номер автомобиля: RXJ1713.7–3946,— если его расшифровать, оно укажет на положение объекта в небе. После десяти часов наблюдений астрономам удалось получить снимок небесного тела, впервые обнаруженного при помощи высокоэнергетических гамма-лучей.

Изображение остатков сверхновой получилось очень отчетливым. При этом их форма, размер и другие детали совпадали с тем, что можно было увидеть на сделанных ранее рентгеновских снимках. В частности, гамма-лучи были более интенсивными на одной стороне оболочки, где она сталкивается с относительно густым облаком межзвездного газа. Именно там теоретики предсказывали наличие наибольшего количества заряженных частиц.

RXJ1713.7–3946 — довольно крупное образование, и хотя оно лежит в 3000 световых лет от нас, с Земли этот объект «выглядит» больше, чем Луна.

Пола Чадвик из университета Дарема с восторгом рассказывала о первых результатах, добытых «ГЕССом»:

«Полученная фотография — это действительно большой шаг по направлению к гамма-лучевой астрономии, а остатки сверхновой — самый восхитительный для фото-сессии объект. Если бы ваши глаза были чувствительны к гамма-излучению, то, находясь в Южном полушарии, вы бы смогли видеть огромное кольцо, ярко пылающее в небе каждую ночь»[13].

А мы добавим, что, если бы вы также были способны видеть космические лучи, а не просто представлять их себе, вы бы увидели, как они выстреливают из светящегося кольца во всех направлениях и, вибрируя, прокладывают свой путь через Галактику, послушно следуя всем указаниям ее магнитных полей. Но так как этому объекту исполнилась всего лишь тысяча лет, RXJ1713.7–3946 едва лишь приступил к образованию космических лучей.

Из пепла

Хотя «сверхновая» вроде бы означает, что звезда «новая», на самом деле она уже давно существует на небе, просто в один прекрасный момент звезда внезапно вспыхивает и становится более заметной для наблюдателей. Звезда разрушается в процессе катаклизма, о чем говорит ее необыкновенно мощное сияние. Существует много разных видов сверхновых, но главные «поставщики» космических лучей — звезды типов II и lb, масса которых намного превышает массу Солнца. В глубине Солнца ядерная печка переплавляет водород в гелий и тем самым вырабатывает энергию, поддерживающую жизнь на Земле. Когда большая часть водорода в ядре Солнца будет сожжена, начнет гореть гелий, синтезируя углерод и кислород. Так ведет себя любая звезда размером с Солнце. Сбросив свою оболочку в виде красивейшей планетарной туманности, само ядро превратится в белого карлика — маленькую, мертвую, медленно затухающую звезду.

В более массивных звездах ядерное горение — в виде реакции синтеза — идет дальше. Сильная гравитация приводит к сжатию ядра, его температура возрастает так, что начинают «гореть» углерод и кислород, производя на свет — или, правильнее сказать, «в свете ядерного пламени» — более тяжелые элементы. В конечном итоге слияние ядер кремния порождает железо, и на этом энергия ядерной печки достигает своего предела. Тепло больше не выделяется, у звезды не остается сил, чтобы сопротивляться давлению гравитации, железное ядро коллапсирует, и все остальное звездное вещество рушится на него.

Поскольку внезапно высвобождается огромное количество энергии, верхние слои звезды отбрасываются наружу. Армии призрачных частиц, называемые нейтрино, взрывным манером выталкивают большую часть звездного вещества в окружающее пространство. А тем временем реакция синтеза, подстегнутая высвобожденной энергией, создает химические элементы тяжелее железа — по всей линейке, вплоть до золота, урана и даже далее.

Несколько недель сверхновая светит с силой миллиардов солнц. В этом случае мертвое ядро становится не белым карликом, а более плотным объектом, нейтронной звездой. Небо усеяно нейтронными звездами, и каждая означает смерть своей крупной предшественницы. Когда эти звезды молоды, они часто заявляют о своем существовании, посылая пульсирующие радиосигналы, поэтому они называются пульсары. Крабовидная туманность, самый известный остаток сверхновой, все еще хранит свой пульсар среди звездных обломков. Во многих других случаях пульсар получает легкий толчок в бок и ускользает, оставив развалины звезды позади, — как поджигатель, покидающий место преступления.

Распыленное до отдельных атомов вещество взрывной волной свободно расходится в космосе со скоростью в тридцать раз меньшей, чем скорость света, то есть 10 тысяч километров в секунду. В результате оно обладает колоссальной кинетической энергией, и приблизительно одна пятая этого вещества в конце концов будет преобразована в космические лучи, путешествующие со скоростями, близкими к скорости света. Но этот процесс требует времени.

По-настоящему образование космических лучей начинается только тогда, когда распыленное до атомов вещество становится таким же разреженным, как межзвездный газ, и встречает сопротивление с его стороны. Тогда вещество взорвавшейся звезды притормаживает и смешивается с атомами межзвездного вещества. Ударные волны становятся более интенсивными, а магнитные поля, связанные с ними, — более сильными.

вернуться

13

UK Particle Physics and Astronomy Research Council press release, 4 ноября 2004 г.

10
{"b":"199278","o":1}