Отдадим должное его проницательности: Фейнман справедливо оценил, сколь высоки ставки в миниатюризации, и призвал исследователей заинтересоваться мирами «внизу», дожидавшимися в его время своих первопроходцев. Считать ли его прозорливцем? Да, он задался вопросом: «Что будет, если удастся произвольно и по одному расставлять атом за атомом?» Но он не предложил никакого ответа на свой вопрос и не придумал — и даже не вообразил, — как и с помощью какого прибора нечто такое стало бы возможным. Он говорил о крайней точности производства, но не о размерах и других характеристиках требующегося оборудования. Его речь была упражнением в прогнозировании. Он хотел показать, каким образом продвижение физики, преодолевающей преграды и выходящей за прежние границы, может оказаться плодотворным. И привел пример с двумя физиками: один добивался все более низких температур, второй — все более высоких. Действия обоих открывали новые области для изучения. Так почему бы, вопрошал Фейнман, не довести до предела миниатюризацию оборудования и механизмов? И предсказал, что записывать и хранить информацию удастся в памяти из какой-нибудь сотни атомов. А сегодня известно, что сотни много — хватит и одного атома.
Фейнман не предсказывал пришествия нанотехнологии, как это ему часто приписывают. Да и не он первым поставил вопрос о пределах миниатюризации и об исследовании «мира внизу». Стоит бросить самый беглый взгляд на минувшее, и станет ясно, что уж никак не за Фейнманом первенство в выказывании интереса к миру очень малых величин… «В юности я думал, что стану изобретателем, этаким Ньютоном <…> мира тех подробностей, которые еще предстоит изучить; вот этот мир иной, и он куда важнее всего, что я, льстя себе, считал своими открытиями», — еще в 1799 году признавался математик Гаспар Монж Наполеону. Случился этот разговор на борту фрегата La Muiron, возвращавшегося из похода в Египет. Фейнман, кто спорит — физик незаурядный и даже несравненный, может быть, великий, но он был наследником многих поколений физиков — и нефизиков, — которые задавались вопросами о мире внизу или о миниатюризации, при этом отнюдь не претендуя на то, чтобы стать провозвестниками или отцами нанотехнологий.
ИСПОЛИНЫ МИНИАТЮРИЗАЦИИ
Когда же началась миниатюризация? С какой временной отметки отсчитывать ее историю? Греческие мудрецы, например, мастерили великолепные астрономические часы с механизмами из крошечных зубчатых колес — в то время эти миниатюрные модели Солнечной системы считались чудесами техники и технологии. Позднее прогресс в конструировании часовых механизмов сыграл существенную роль в миниатюризации механических двигателей, которыми оснащались автоматы, а еще позднее — роботы. Но миниатюризация машин проходит не только по ведомству техники. Она неотторжима от научного прогресса вообще.
Однажды в 1764 году профессор физики Университета Глазго Джон Андерсон решил показать студентам, как работает «огненный насос» или «атмосферная машина» — так в Англии именовались механизмы, выкачивавшие воду из угольных шахт. Машины эти были слишком громоздкими и тяжелыми и занимали слишком много места, чтобы поместиться в университетской аудитории. Поэтому построили уменьшенный вариант в метр высотой. Но профессора ждало неприятное разочарование: миниатюрная машина отказывалась работать! Пришлось везти ее в мастерскую, где чинили научные приборы, — ту самую, в которой работал Джеймс Уатт. Тот быстро понял, в чем дело: уменьшение объема рабочей камеры привело к тому, что атмосферного давления стало не хватать для преодоления трения поршня о стенки камеры. И тогда сообразительный Уатт предложил использовать вместо давления воздуха давление водяных паров. Так он изобрел паровую машину, что дало возможность перемещаться в пространстве с помощью двигателя — когда паровой двигатель стал еще меньше, он легко поместился на тележке с колесами. Начиналась новая эра в науке, рождалась термодинамика.
По ходу своих исследований физики часто сталкивались с задачей измерения. И всегда нуждались во все более точных измерительных приборах. Бывало, что помогала миниатюризация. Джеймс Прескотт Джоуль (1818–1889), к примеру, хотел замерять крайне ничтожные повышения температуры в чане с водой. Он был пивоваром, как и его отец, и потому занимался увлекавшим его вопросом о соотношении работы и тепла только на досуге. Он знал, что работу можно превратить в тепло — довольно потереть один предмет о другой — и, наоборот, тепло превращается в работу (как в паровой машине Уатта). Задавшись целью определить точное количество тепла, получаемое при совершении некоторой заданной работы, Джоуль поставил такой опыт: он опустил мешалку с лопастями в емкость с водой, и лопасти, вращаясь, нагревали жидкость. За полчаса лопасти совершили 20 оборотов, а вода нагрелась только на половину градуса. Чтобы замерить столь ничтожное повышение температуры, Джоулю понадобился куда более точный термометр, чем те, что у него были, и он смастерил миниатюрный термометр, оказавшийся необычайно точным. По принципу действия новый термометр не отличался от других термометров того времени: и там и там использовалось расширение спирта (или ртути), пропорциональное повышению температуры. Значит, если наполнить спиртом трубку с делениями, то уровень жидкости в трубке будет указывать температуру. Чтобы повысить точность, Джоуль изготовил очень тонкую трубочку и заполнил ее спиртом. К несчастью, диаметр трубки не был постоянным по всей длине и, следовательно, уровень жидкости в трубке не поднимался строго пропорционально вслед за повышением температуры — нужной точности измерения добиться не удавалось. Тогда Джоуль отметил неровности трубки, рассмотрев ее по всей длине в оптический микроскоп, и, чтобы все-таки использовать незадавшуюся трубочку, решил скомпенсировать ее неровности градуировкой, подстраивая (слегка меняя) расстояние между соседними делениями.
Деления на трубку он нанес, применив весьма остроумный способ: покрыл стеклянную трубочку пчелиным воском, а затем сделал на воске поперечные риски очень острым ножом. Затем он погрузил трубочку в разведенную кислоту. Кислота пощадила воск и разъела стекло, обнаженное надрезами, — и на стекле появились тоненькие рисочки: погрешность промежутка между делениями не превышала 6 микрон. Так Джоуль превратил тоненькую трубочку в сверхточный термометр. Его метод гравировки с предварительным нанесением маскирующего слоя применяется до сих пор, в частности, в микроэлектронике. Это изобретение, а также невероятное упорство, помогло Джоулю в 1850 году первым в мире определить соответствие между работой и теплом, выделяемой при ее совершении.
ОТ ЭЛЕКТРОНА К ЭЛЕКТРОНИКЕ
Изучать природные явления непросто. И так было всегда. Порой они кажутся слишком беспорядочными и потому легко вводят в заблуждение. Или же слишком отдалены от повседневности. Чтобы обойти подобные затруднения, ученый пытается воспроизвести естественные условия в лаборатории — чтобы все было под рукой. Подчас это достигается посредством «миниатюризации» изучаемого явления: оно воспроизводится в уменьшенном масштабе. Показательный пример — те эпизоды в истории науки, которые вызвали пришествие физики элементарных частиц, которая в свою очередь породила электронику, а затем и микроэлектронику.
В XVIII в. физики, в том числе аббат Ноле во Франции и Бенджамин Франклин в США, изучали молнию, то есть электрические разряды в атмосфере. Вскоре они обнаружили, что неплохо бы заиметь «коробочку» для воспроизведения подобных явлений в лаборатории, где можно было чувствовать себя столь же непринужденно, как в салоне небедного буржуазного дома. Конечно, изучать молнию в природе и на природе вроде бы предпочтительнее — большая точность, и все такое. Но уж очень это небезопасно: к тому времени от удара молнией погибло уже несколько физиков, пытавшихся исследовать грозы. Немецкий промышленник Генрих Гейслер, торговавший научными приборами, выпускаемыми его предприятиями, в 1857 году воспроизвел самые настоящие малюсенькие молнии между двумя электродами в стеклянном сосуде, наполненном газом. В 1874 году английский физик Уильям Крукс откачал газ из стеклянного баллона в надежде, что изучать искусственные молнии станет проще. И тогда же другие физики задались вопросом о сущности молний, рождавшихся в баллоне Крукса. Что это: электромагнитное излучение, как полагали немецкие ученые, или частицы, как думали английские физики? И британец Джозеф Джон Томсон дал убедительный ответ: слегка изменив вакуумный сосуд Крукса, он в 1898 году открыл электрон.