Литмир - Электронная Библиотека

Впоследствии Фишер вызвал всеобщее осуждение, отрицая причинно-следственную связь между курением и раком легких: он утверждал, что пристрастие к курению и предрасположенность к раку объясняются на генном уровне. Как выяснилось позже, выступления Фишера щедро оплачивала некая табачная компания.

Эпизод с чаем и молоком описан в статье: Mann George V., Chance Encounters, Perspectives in Biology and Medicine, 25, 316 (1982).

Медяк — другой

Рудольф Шёнхеймер (1898–1941) — немецкий биохимик, чьи заслуги перед наукой исключительны. Будучи евреем, он лишился работы в Германии перед началом Второй мировой войны и нашел убежище, как и многие другие ученые с похожей судьбой, в Америке, в Медицинской школе Колумбийского университета в Нью-Йорке. Глава биохимического факультета, Ганс Тэтчер Кларк, собрал у себя целую когорту блестящих ученых — хитроумных и владеющих множеством языков европейцев.

В первые послевоенные годы в химии физиологических процессов было сделано несколько важнейших открытий, и случилось это во многом благодаря открытию радиоизотопов; можно было сделать радиоактивными (и тем самым пометить) вещества, участвующие в метаболизме, и следить за их химическими превращениями в отдельной клетке или во всем организме. Однако тогда радиоизотопы были еще редкостью и стоили больших денег. Шёнхеймер намеревался ставить опыты с меченной изотопами мочевиной — конечным продуктом обмена веществ, который выделяют и животные, и человек. Главным авторитетом в деле разделения радиоизотопов был Гарольд Ури: он и согласился выдать Шёнхеймеру скромное количество нитрата аммония, обогащенного азотом-15 — изотопом, который составляет ничтожную долю в природном азоте (где преобладает азот-14). Препарат с изотопом Ури приготовил из обычного нитрата аммония — вещества, легко взрывающегося от детонации, — который незаконно провез в Нью-Йорк с завода в Нью-Джерси через Голландский туннель, забросив мешок на откидное сиденье своего спортивного автомобиля. Стеклянная ампула, которую он отдал Шёнхеймеру, содержала существенную часть мировых запасов очищенного изотопа 15N.

Превратить нитрат аммония в мочевину было задачей Девитта Штетгена, юного ассистента Шён-хеймера. Прежде всего Шёнхеймеру и Штеттену предстояло выбрать один из множества способов синтеза мочевины: та была первой органической молекулой, полученной в лаборатории из неорганического вещества (изоцианата аммония). Как водится, они начали с изучения библии химиков-синтетиков, справочника Бельштейна, и остановились на довольно простом, как могло показаться, методе: аммиак, выделенный из раствора нитрата аммония, пропускается сквозь расплавленный дифенилкарбонат. Реакция дает мочевину со юо-процентным выходом: в этом случае, решили они, ни единый микрограмм драгоценного 15N не пропадет даром. Штеттен приступил к эксперименту, но для начала проверил действенность метода на обычном нитрате аммония. Вот что из этого вышло:

К моей великой досаде, я увидел, что никакой реакции не идет вообще. Аммиак, пропускаемый сквозь расплав, выделялся в химически неизменном виде. Я перепробовал, как казалось, все правдоподобные поправки к методике, но безуспешно — и окончательно утвердился во мнении, что немецкий автор, описавший этот синтез, попросту лгал. Расстроившись, я рассказал обо всем Руди. “А когда, — спросил он, — был описан твой синтез?” — “В 1880 году”, — отвечал я. Тут в нем заговорил шовинист.

“В 1880 году, — парировал Руди, — немецким химикам не было нужды лгать”. Затем мы вместе дотошно изучили описание, и он заметил, что если я работаю с ничтожными количествами дифенилкарбоната, то в оригинале речь идет про килограммы реагентов. Внезапно он осклабился: “Вот когда я был аспирантом в лаборатории Томаса в Лейпциге, по стенам были развешаны покрытые пылью огромные медные реторты и прочие реакционные сосуды. Стекло в те дни не было таким прочным, как теперь. Реакции проводили с килограммами веществ, а когда требовался разогрев, эти килограммы закладывали в медные сосуды. Может быть, медь катализирует реакцию?” Ставя новый синтез, я это учел и добавил к дифенилкарбонату чуть-чуть меди. На химическом складе нашлось немного мелкодисперсного медного порошка, который, вероятно, предназначался для добавления в краску, когда требовалось придать ей металлический блеск. Щепотки металлической меди оказалось достаточно. Теперь аммиак и в самом деле поглощался без остатка дифенилкарбонатом и превращался в мочевину.

Синтез меченой мочевины был первым примером использования изотопа 15N. Этот эксперимент открыл новую главу в биохимии.

Со временем поведение Рудольфа Шёнхеймера становилось все более странным. Приступы глубокой подавленности следовали один за другим, и однажды ночью в 1941 году, на пике блестящей карьеры, он покончил с жизнью.

Девитт Штеттен излагает свою историю про синтез мочевины в книге: Perspectives in Biology and Medicine, 25, 354 (1982).

Ученые и шовинисты

Планета Уран, открытая Уильямом Гершелем в 1781 году, в XIX веке вдруг стала вызывать у астрономов беспокойство. Алексис Бувар обнаружил, что траектория ее движения по орбите отклоняется от предсказанного — хотя расчеты, основанные на законах Ньютона, учитывали и притяжение Солнца, и влияние других планет. Не вкралась ли ошибка в сами законы Ньютона? Или, возможно, на Уран влияет еще одна, неучтенная, планета?

Орбиту такой гипотетической планеты впервые попробовал вычислить в 1843 году юный Джон Коуч Адамс, недавний выпускник Кембриджа. Задача представлялась нелегкой, однако после трех лет упорной работы Адамс смог предъявить предварительные результаты. Когда Адамс решился показать их почтенному профессору Джеймсу Челлису, директору Кембриджской обсерватории (который единолично распоряжался тамошним телескопом и никого к нему не подпускал без веских оснований), тот от него просто отмахнулся, посоветовав обратиться к королевскому астроному сэру Джорджу Эйри. Сэр Джордж тоже не сильно помог: он сообщил Адамсу, что поиски новой планеты стоит начинать только после более детальных расчетов. На них у раздосадованного Адамса ушел еще год.

Тем временем Урбен Жан Жозеф Леверье (1811–1877) из парижской Политехнической школы проделал те же расчеты и в 1846 году опубликовал свои прогнозы относительно положения и вероятных размеров загадочной планеты. Пытаясь увлечь этой идеей французских звездочетов, Леверье тоже столкнулся с трудностями — его отправили к директору Берлинской обсерватории. Письмо Леверье пришло в Берлин 23 сентября, и той же ночью помощник директора обсерватории, Иоганн Готтфрид Галле, приступил к поискам. По счастливому стечению обстоятельств, как раз перед тем обсерватория получила недавно заказанную превосходную карту неба. Благодаря ей неуловимое небесное тело было найдено Галле всего за несколько часов. Взволнованный, он написал Леверье: “Планета, расположение которой Вы указали, действительно существует. В тот же день, когда я получил Ваше письмо, я обнаружил звезду восьмой величины, которой нет на превосходной Carta Horta XXГ.

Едва вышла статья Леверье, Эйри, вероятно, испытал угрызения совести и немедленно обратился к Челлису с просьбой начать поиски неизвестной планеты. Однако карта звездного неба, которая имелась у Челлиса, не могла сравниться с Carta Horta XXI. Только когда Галле сообщил о своих успехах, Адамс понял, что тоже видел новую планету.

Адамс, человек скромный и молчаливый, не выказывал зависти к удачливому конкуренту. Когда они с Леверье познакомились в Кембридже, он даже с ним подружился.

Открытие Нептуна — так назвали планету в парижском Бюро долгот, хотя Эйри и настаивал, чтобы, не нарушая традиции, планету назвали именем греческого бога Океана, а Галле предпочел бы Нептуну и Океану Януса, — стало сенсацией. Во-первых, законы Ньютона и модель планетарной системы Кеплера с триумфом продемонстрировали свою мощь. Но, что еще важнее, наблюдения эффектно подтвердили теоретический прогноз! Последнее поразило воображение как широкой публики, так и политиков, которым впервые представился шанс воочию убедиться в важности научных изысканий. Говорят, что именно тогда правительства европейских стран начали всерьез интересоваться наукой.

82
{"b":"196024","o":1}