Литмир - Электронная Библиотека

А если подойти к вопросу более педантично, то по законам сохранения количества движения поезд слегка замедлит ход, но затем быстро восстановит первоначальную скорость. Ускорение, которое ощутит муха, если ее разгоняют до скорости 200 километров в час на дистанции в 1 сантиметр, составит 3 х 105 м/с2, или около 30 000 джоулей. На муху весом 1 грамм и на окно действует сила около 300 ньютонов.

Джулиан Бин Ричмонд, Суррей, Великобритания

Когда поезд сталкивается с мухой, передние несколько нанометров ветрового стекла в месте соприкосновения на миг останавливаются, а следующие несколько нанометров подвергаются упругой деформации; остальная часть поезда продолжает двигаться полным ходом.

После столкновения сжатый материал ветрового стекла восстановит форму, его передний край наберет ускорение и снова достигнет прежней скорости. Следов столкновения на нем практически не останется (если не считать следов неупругой деформации мухи).

Все вышеописанное — пример чрезмерного упрощения, поскольку на практике перед поездом будет двигаться волна упругого напряжения, передняя поверхность поезда — вибрировать, пока не прекратится движение, но эти частности не играют роли в нашем случае столкновения мухи и поезда. Если массы примерно одинаковы, как при столкновении автомобилей, дополнительные перемещения внутри каждой могут иметь большое значение, например, если от них зависит характер травм, полученных пассажирами.

М. Г. Лэнгдон Фархем, Суррей, Великобритания

Давая объяснения столкновению мухи с поездом, читатели приняли во внимание многочисленные аспекты — от длины мухи до пластичности ветрового стекла (а если муха ударится о котел?).

Но все авторы ответов упустили из виду подоплеку вопроса — скорее философскую, нежели физическую. Потому что словом «муха» заменено выражение «один атом мухи». Это еще один вариант парадокса Зенона Элейского. Примерно в 450 году до н. э. он сказал, что движущийся объект постоянно находится в движении, однако в любой конкретный момент времени имеет определенные координаты (т. е. является неподвижным). Человек не в состоянии увидеть, измерить или вообразить бесконечно малое время — точно так же мы не можем представить себе бесконечность. И никогда не сможем.

Р. К. Хендра Лондон, Великобритания

Дыра в куполе

«Недавно я на благотворительной акции прыгала с парашютом. Помимо страха высоты меня тревожила большая дыра в куполе парашюта. Зачем она нужна? Помогает ли она снизить торможение парашюта?»

Сьюзи Клейн Лондон, Великобритания

До появления полюсного отверстия (той самой пугающей дыры в куполе) воздух из парашюта можно было выпустить только из-под одного края, а для этого наклонить парашют, причем беспомощный парашютист кренился набок.

При обратном движении парашюта воздух выходил из-под противоположного края, возникало равномерное движение, напоминающее колебания маятника (убедитесь в этом сами, посмотрев кадры с парашютистами времен Второй мировой войны).

Понятно, что такой спуск на землю чрезвычайно опасен, особенно в ветреный день. Полюсное отверстие, через которое воздух медленно уходит из купола, препятствует колебаниям и обеспечивает большую безопасность посадки.

Еще одно достоинство полюсного отверстия в том, что оно замедляет раскрытие парашюта. Без этого отверстия воздух резко врывается в купол и может повредить его или вызвать слезы у парашютиста (мужчинам это не к лицу).

Пол Дир Кембридж, Великобритания

Взгляд вниз

«Почему в самолетах такие маленькие окошки и почему они размещены так низко на фюзеляже, что многим людям приходится наклоняться, чтобы увидеть другие самолеты на аэродроме?»

Тимоти Кулумпас Нью-Йорк, США

Как и многие другие конструкционные особенности самолетов, размещение различных деталей — своего рода компромисс. Конструкторам самолетов жилось бы гораздо легче, если бы в самолетах вообще не предусматривались иллюминаторы, но мы по-прежнему считаем, что они должны быть.

Британские конструкторы утратили положение лидеров в сфере производства реактивных авиалайнеров после ряда аварий самолетов de Havilland Comet в середине XX века отчасти из-за усталости металла вокруг иллюминаторов, которая привела к разрушению конструкций.

Иллюминаторы по-прежнему остаются обязательным элементом самолетов, но их стараются делать как можно меньше. В наши дни диаметр иллюминаторов всего 33 сантиметра. В них три рамы: две герметично закупоренные и третья внутренняя, чтобы пассажиры не добрались до двух первых и не повредили их. Рамы объединены в один оконный пакет, который прочно встроен в стенку фюзеляжа.

Разумеется, иллюминатор гораздо тяжелее и обходится дороже, чем тонкий лист алюминия, который заменяет, поэтому фюзеляж приходится укреплять, чтобы он выдержал рамы. Увеличение веса означает, что самолет может принять на борт меньше пассажиров и багажа, и это снижает потенциальные доходы авиакомпаний.

Эксплуатация иллюминаторов тоже представляет проблему — они не только царапаются и бьются, через них происходит также утечка воздуха из салона, они подвержены конденсации и обледенению.

Расположение иллюминаторов зависит от модели самолета, но обычно конструкторы стараются размещать их центр чуть ниже уровня глаз сидящих пассажиров. С земли иллюминаторы кажутся низковатыми, но в полете дают возможность смотреть на землю. Если поднять иллюминаторы повыше, это почти ничего не даст. Поскольку сиденья расположены в самой широкой части круглого или овального фюзеляжа, иллюминаторы будут обращены вверх под утлом 10–15°. При этом в полете пассажир будет видеть только небо. Кроме того, если верх иллюминатора окажется на уровне глаз, солнце будет слепить их. Пассажирам придется опускать жалюзи, а это значит, что можно было бы обойтись вообще без иллюминаторов.

Полезно было бы делать иллюминаторы более толстыми, но, как я уже говорил, это непрактично из-за увеличения веса.

Кроме того, не забывайте, что каждый гражданский самолет, летающий сегодня, был разработан по крайней мере десять лет назад, а некоторые приступили к службе 40 лет назад. За это время изменились и люди, и дизайн сидений. Когда разрабатывались эти модели самолетов, существовали четкие принципы конструирования, в том числе и касающиеся положения иллюминаторов; линия размещения иллюминаторов традиционно использовалась как удобное место сборки частей фюзеляжа. Это положение закрепилось, под него настроены сборочные линии, переделка которых обойдется непомерно дорого.

Тем временем средние размеры людей продолжают увеличиваться. Дизайнерам приходится пользоваться так называемыми «критериями Дрейфуса», чтобы определить размеры сидений. Эти критерии постоянно меняются, в США дизайнеры обычно делают кресла для самолетов подходящими для 95 % американцев мужского пола. Если у вас слишком высокий рост, вам покажется, что иллюминатор расположен слишком низко, — обычно так кажется рослым людям.

И наконец, в настоящее время в самолетостроении действует тенденция отхода от просторного и неэкономного размещения в сторону плотной расстановки кресел. В таких обстоятельствах, когда высота кресла играет важную роль в размещении максимального количества пассажиров, основание кресла делают выше, чтобы хватило места для ног пассажира, сидящего сзади. Следовательно, иллюминатор окажется еще ниже, чем было задумано.

Теренс Холлингворт Бланьяк, Франция

Иллюминаторы в самолетах делают маленькими по соображениям безопасности. Первый крупный реактивный авиалайнер, de Havilland Comet, имел большие прямоугольные иллюминаторы, из которых открывалась панорама земли. Но после нескольких лет службы такие самолеты начали один за другим терпеть аварии.

38
{"b":"195952","o":1}