Литмир - Электронная Библиотека

Большинству читателей, вероятно, известно классическое определение жизни, данное Энгельсом: «Жизнь – это способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка».

Уже в этой главе мы встретим убедительные примеры справедливости определения Энгельса. Однако достаточно ли оно? Сам Энгельс так не думал. Для него обмен веществ – лишь существенный, но не единственный критерий жизни. Действительно, мы убедимся, что обмен веществ может быть присущ и неживым объектам.

Представим опыт, который нетрудно осуществить. Мы имеем два непрозрачных ящика, которые непрерывно вентилируются. Подобные устройства, в которых контролируется лишь вход и выход, а содержание их неизвестно, кибернетики как раз и называют «черными ящиками». Анализ выходящего из ящиков воздуха показывает, что в обоих случаях мы имеем на выходе дефицит кислорода, повышенную концентрацию углекислого газа и водяных паров. Измерение температуры покажет, что на выходе воздух теплее, чем на входе. Мы вправе заключить, что в каждом ящике содержится система, способная к обмену веществ с окружающей средой. Если мы вскроем ящики, то обнаружим в одной из них живую мышь, а в другом – горящую свечу[2]. Критерий обмена веществ здесь не срабатывает, не позволяя отличить живое от неживого, процесс горения от процесса дыхания. Если мы перекроем кран поступления воздуха, мышь погибает. Однако и мертвые организмы могут обмениваться веществами с окружающей средой. На этом, в частности, основан процесс образования окаменелостей. Остатки животных и растений в слое горной породы отдают окружающей среде органику ее место занимают минералы. Особенно удивительны окаменевшие деревья – внешне они до мельчайших деталей сохраняют структуру древесины, однако она миллионы лет назад заместилась кремнеземом и окислами железа.

Какой вывод можно сделать из этого? Обмен веществ – необходимый, но недостаточный критерий жизни. Его нужно дополнить каким-то иным критерием.

Можно сформулировать определение жизни следующей фразой: жизнь – это активное, идущее с затратой энергии поддержание и воспроизведение специфической структуры.

Чем короче определение, тем больше оно нуждается в расшифровке. Что такое активное воспроизведение? Под этим словосочетанием мы должны понимать такой процесс, когда система сама воспроизводит себя и поддерживает свою целостность, используя для этого элементы окружающей среды с более низкой упорядоченностью. Пассивный процесс такого рода отнюдь не признак жизни. Птицы из года в год воспроизводят свои гнезда, бобры строят плотины, но ни гнезда, ни плотины нельзя считать живыми объектами в отличие от их строителей. Особенно характерно воспроизведение неживых объектов для деятельности человека. Средневековый переписчик книг, создававший новый фолиант взамен истрепанного, и современный любитель музыки, переписывающий магнитофонную запись, – хорошие тому примеры. Но человек куда сложнее книги или магнитофонной записи. Как-то автору довелось читать фантастический рассказ о том, как в далеком будущем воссоздали живого Пушкина по информации заключенной в полном собрании его сочинений. Вот уж это совершенно ненаучная фантастика с большим успехом можно попытаться воссоздать яблоню по кусочку яблочной пастилы. В дальнейшем мы еще вернемся к этой проблеме.

Почему в нашем определении подчеркивается то, что поддержание и воспроизведение структуры живого организма должно идти с затратой энергии? Потому что это позволяет различать живые существа от других самовоспроизводящихся структур, например кристаллов.

Еще великий французский натуралист Бюффон в XVIII веке проводил аналогии между ростом организмов и ростом кристаллов. Действительно, каждому кристаллу присуща своя специфическая структура, возникающая спонтанно. Так, хлористый натрий кристаллизуется в виде куба, углерод в форме алмаза – в виде октаэдра. Скопления, сростки кристаллов порой удивительно похожи на структуры живой природы. Вспомните хотя бы морозные узоры на оконных стеклах. Они иногда настолько бывают похожи на листья папоротников и иных диковинных растений, что известный биолог А. А. Любищев видел в этом какой-то глубокий смысл. Можно получить и трехмерную структуру, сходную с растениями (на сей раз при растворении кристаллов). В детстве я увлекался подобными опытами. Нужно взять кристаллики какой– либо цветной соли – медного купороса, бихромата калия – и залить их жидким стеклом (силикатным клеем). Через несколько дней над каждым кристалликом вырастает ветвящаяся структура, удивительно похожая на растение, а в целом получается пейзаж какой-то фантастической планеты.

Аксиомы биологии - i_01.jpg

Рис. 1. Морозные узоры на окнах порой так напоминают листья папоротников и иных диковинных растений, что А. А. Любищев видел в этом какой-то глубокий общебиологический смысл. Дело, однако, гораздо проще. Кристаллы, образующиеся из водяных паров, растут с поверхности и потому образуют структуру с наибольшей поверхностью. Листья папоротника имеют наибольшую поверхность для поглощения солнечного света и углекислоты. В первом случае при образовании структуры энергия выделяется, во втором – поглощается.

Как-то мне довелось видеть и трехмерные морозные узоры. На склоне камчатской сопки земля с легким хрустом проседала под ногами на один-два сантиметра.

Оказалось, что тонкий поверхностный слой почвы был поднят изящными ледяными веточками, торчащими густо, как щетинки на зубной щетке. Ни до, ни после мне не пришлось видеть такой занятной кристаллизации водяных паров, хотя пишут, что в горах такой феномен не столь уж редок.

Даже металлы образуют подобные структуры металлургам: всего мира хорошо известна так называемая «елка Чернова» – древовидный сросток кристаллов железа, выросший в раковине отливки.

И тем не менее аналогии между кристаллами и организмами, между морозными узорами и листьями папоротника неправомерны. Хотя эти структуры внешне сходны, процессы их возникновения энергетически диаметрально противоположны. Кристалл – система с минимумом свободной энергии. Недаром при кристаллизации выделяется тепло. Например, при возникновении одного килограмма «морозных узоров» должно выделиться 619 килокалорий тепла (539 при конденсации водяных паров и 80 при переходе в твердую фазу). Столько же энергии нужно затратить на разрушение этой структуры. Листья папоротника, наоборот, при своем возникновении поглощают энергию солнечных лучей, и, разрушая эту структуру, мы можем получить энергию обратно. Да это мы и делаем, сжигая каменный уголь, образовавшийся из остатков гигантских папоротников палеозойской эры. Дело здесь не в самом листообразном рисунке: бесформенный кусок льда той же массы потребует на расплавление и испарение столько же энергии. То же и с папоротником: на образование внешней сложности организма расходуется энергия, ничтожно малая по сравнению с той, что законсервирована в органике.

А как же внешнее сходство? И листья папоротника, и морозные узоры обладают максимальной площадью поверхности при данном объеме. Для папоротника (и любого другого растения) это необходимо, ибо дыхание и ассимиляция углекислого газа идет через поверхность листьев. В тех случаях, когда нужно снизить расходы воды на испарение, растения, например кактусы, обретают шарообразную форму с минимальной площадью поверхности. Но платить за это нужно снижением темпов ассимиляции СO2 и соответственно замедлением роста.

Водяные пары, кристаллизуясь на холодном стекле, также образуют структуру с максимальной поверхностью, потому что скорость потери свободной энергии при этом максимальна (кристаллы растут с поверхности). Так что аналогии между кристаллами и живыми организмами не имеют, как это принято сейчас говорить, эвристического значения. Жидкость, выплеснутая из сосуда в условиях невесомости, приобретает форму биллиардного шара (минимум энергии поверхностного натяжения). Но между игрой в биллиард и полетами в космос столько же общего, сколько между кристаллизацией и ростом живого организма.

вернуться

2

Первым подобный опыт проделал А. Лавуазье, поместивший в примитивный калориметр, охлаждавшийся льдом, морскую свинку. Измерив количество оттаявшей воды, он сопоставил его с количеством кислорода, потребленного свинкой, и пришел к выводу: жизнь – это медленное горение.

4
{"b":"19443","o":1}